

The System: Na\$_{2}\$O-CO\$_{2}\$-NaCI-H\$_{2}\$O, Considered as Two Four-Component Systems

F. A. Freeth

Phil. Trans. R. Soc. Lond. A 1923 223, 35-87

doi: 10.1098/rsta.1923.0002

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

35

II. The System: Na₂O—CO₂—NaCl—H₂O, considered as Two Four-Component Systems.

By F. A. Freeth, O.B.E., M.Sc.

Communicated by Prof. F. G. Donnan, F.R.S.

Received January 14,—Read March 23, 1922.

The above arbitrary division is due to the fact that the experimental work does not include an examination of the vapour phases.

EXPERIMENTAL.

The solubility determinations were carried out in thermostats of an ordinary pattern. Glass bottles similar to those used by van't Hoff ('Ozeanische Salzablagerungen,' p. 9) were used for solutions weak in sodium hydrate. Silver bottles, as shown in fig. 1, were used for the strong sodium hydrate solutions.

The composition of the solid phases in equilibrium with saturated solutions was determined by Schreinemakers' "rest" method— 'Zeit. Phys. Chem.,' vol. 11, p. 75, and vol. 59, p. 641.

Carbon dioxide was determined gravimetrically by absorption in potassium hydrate, chlorine by titration with silver nitrate (Volhard), and sodium by titration with sulphuric acid. temperatures at which observations were made are: 0°, 15°, 20°, 25°, 30°, 35°, 45°, and 60° C. All results are expressed as weight percentage of the components.

THE SYSTEMS OF TWO COMPONENTS.

The values for the solubilities of the single salts in water are taken from the well-known authors cited in Landolt BÖRNSTEIN'S 1912 edition:

$$Na_2CO_3$$
— H_2O , p. 484; $NaOH$ — H_2O , pp. 487, 488; $NaHCO_3$ — H_2O , p. 486; $NaCl$ — H_2O , p. 485.

VOL. CCXXIII.—A 606.

[Published June 28, 1922.

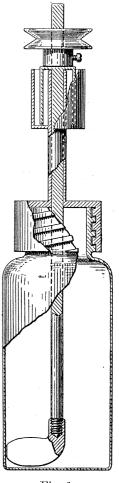


Fig. 1.

THE SYSTEMS OF THREE COMPONENTS.

The two systems of four components with which we are concerned may be considered as made up of five systems of three components, one of which is always water, namely:—

(1)
$$Na_2CO_3$$
— $NaCl$ — H_2O ; (2) Na_2CO_3 — $NaOH$ — H_2O ; (3) Na_2CO_3 — $NaHCO_3$ — H_2O ; (4) $NaCl$ — $NaOH$ — H_2O ; (5) $NaHCO_3$ — $NaCl$ — H_2O .

No experimental work has been done on the two remaining dry systems, namely:—

We will now consider the above five systems in their order. Pressure is assumed constant (atmospheric). The results are plotted in triangles in the usual manner.

The numerical results will be found in Tables I. to VIII.: these are plotted in fig. 2. A description of the isotherms of 0° and 30° will render the remainder quite clear. At 0° the triangle is divided into the following areas:—

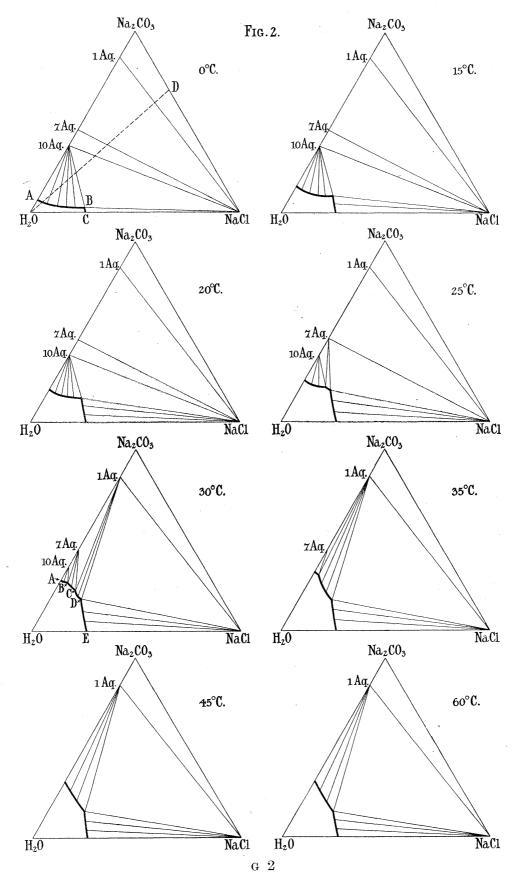
The area ABC, H₂O, representing unsaturated solutions.

The area A 10 B, representing mixtures of solid Na₂CO₃.10H₂O and saturated solution.

The area BC, NaCl, representing mixtures of solid NaCl and saturated solution.

The area 10 B, NaCl, representing mixtures of solid Na₂CO₃.10H₂O, solid NaCl, and solution B.

And three areas representing mixtures of three solids, namely:—


$$egin{aligned} {
m Na_2CO_3.10H_2O} + {
m Na_2CO_3.7H_2O} + {
m NaCl}, \ {
m Na_2CO_3.7H_2O} + {
m Na_2CO_3.1H_2O} + {
m NaCl}, \ {
m Na_2CO_3.1H_2O} + {
m Na_2CO_3} + {
m NaCl}, \end{aligned}$$

these areas being formed by the triangles made by joining up the points representing the composition of the solids in question in their appropriate groups.

The meaning of the lines bounding areas follows directly from the above. example, the line AB as the boundary between the areas Na₂CO₃.10H₂O + saturated solution and unsaturated solution, is naturally the range of clear solutions which can be in equilibrium with Na₂CO₃.10H₂O.

Since any mixture of the components or their compounds can be expressed by a point in the triangle Na₂CO₃—H₂O—NaCl, we can at once determine the quantities and composition of stable phases which will be formed from any mixture or mixtures whatsoever, as, for example, along the line H₂O D.

The amounts of phases into which any total composition represented by a point in a three-phase area will split up are found by the same construction as that employed

to find the weights which would have to be present at the corners of a triangle in order that the point in question should be its centre of gravity.

If the total quantity of matter under consideration has a composition represented by a point on a line or in a two-phase area, the relative amounts of phases present are inversely as the distance of the complex point from the ends of the line.

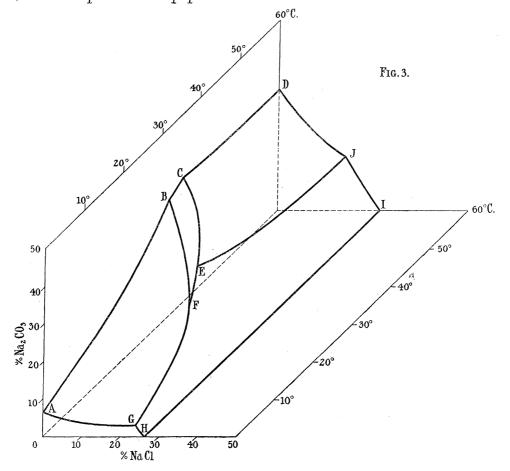
As we are not concerned with two liquid layers in any of these systems, all our two-phase areas are solid-liquid; consequently, the point representing our complex will lie on one of the tie-lines of such an area and the above statement will hold for this line.

At 30° C. two of our three-phase areas have disappeared, namely, 7 Aq, 1 Aq, NaCl, and 10 Aq, 7 Aq, NaCl, and have been replaced by two two-phase and three threephase areas, namely:—

Na₂CO₃.7H₂O BC, representing mixtures of solid 7H₂O and solution.

Na₂CO₃.1H₂O CD, representing mixtures of solid 1H₂O and solution.

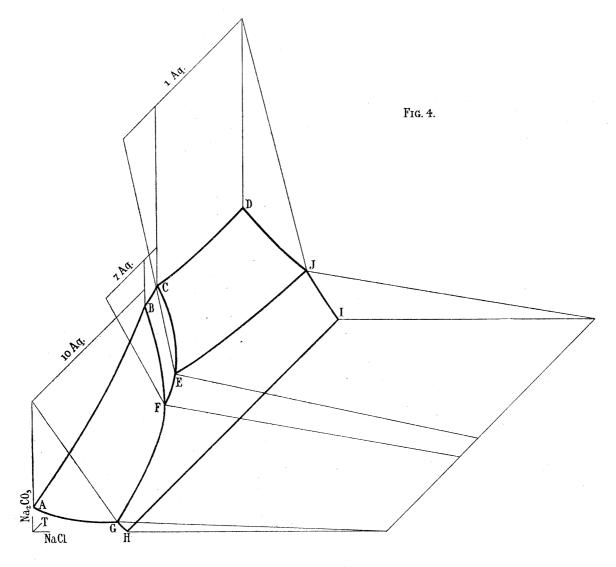
And:


38

 $Na_2CO_3.10H_2O + Na_2CO_3.7H_2O + Solution B.$

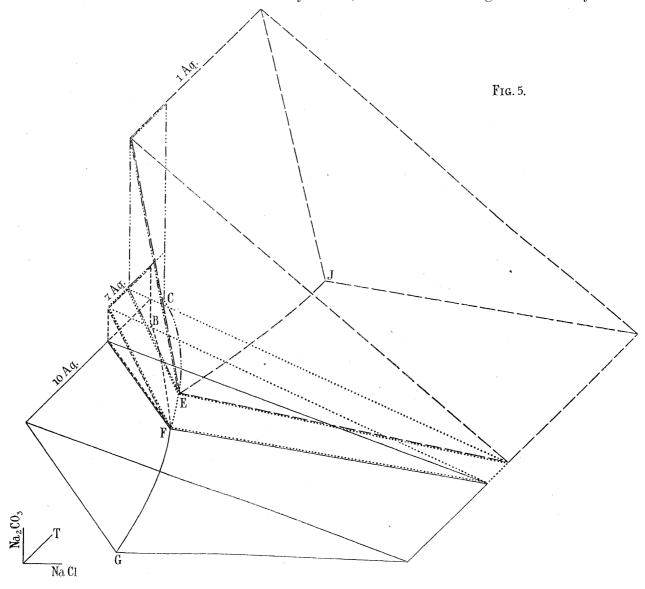
 $Na_2CO_3.7H_2O + Na_2CO_3.1H_2O + Solution C.$

 $Na_2CO_3.1H_2O + NaCl + Solution D.$


The above isothermals are plotted against temperature in the form of the conventional space-model in fig. 3. Na₂CO₃ is plotted vertically, NaCl horizontally, and temperature inwards, from the plane of the paper.

The resulting irregular-shaped solid block gives the composition of all unsaturated solutions, and its surfaces those clear solutions which are in equilibrium with the various solid phases, namely:—

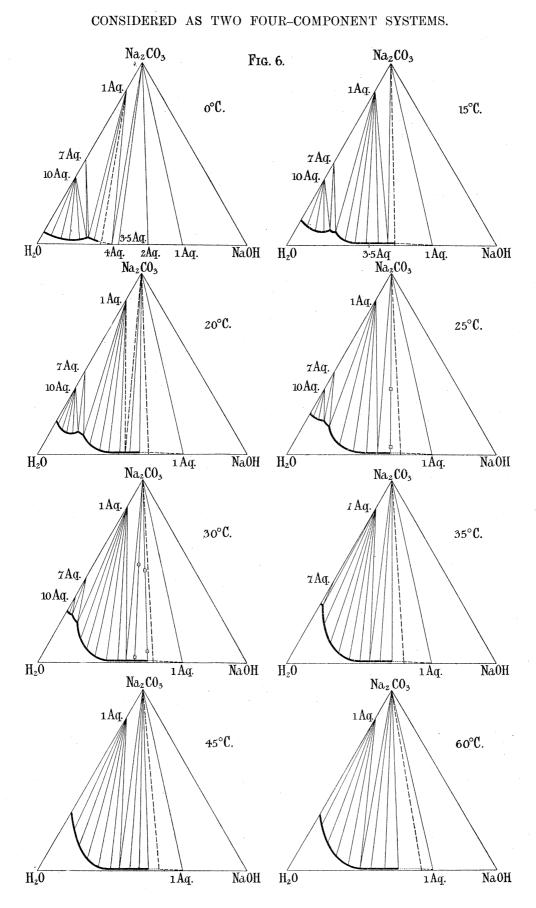
ABFG						•	•	•		•	•	•	•	•	•	$Na_2CO_3.10H_2O.$
\mathbf{BCEF}	•								•						.•	$Na_2CO_3.7H_2O.$
CDJE	•	•					•						•			$Na_2CO_3.1H_2O.$
HGFEJ	Ι															NaCl.


The volumes representing complexes of solid + saturated solution are shown in fig. 4. As the same letters are used as in fig. 3, these can be readily identified.

The volumes representing saturation with respect to two solid phases and solution

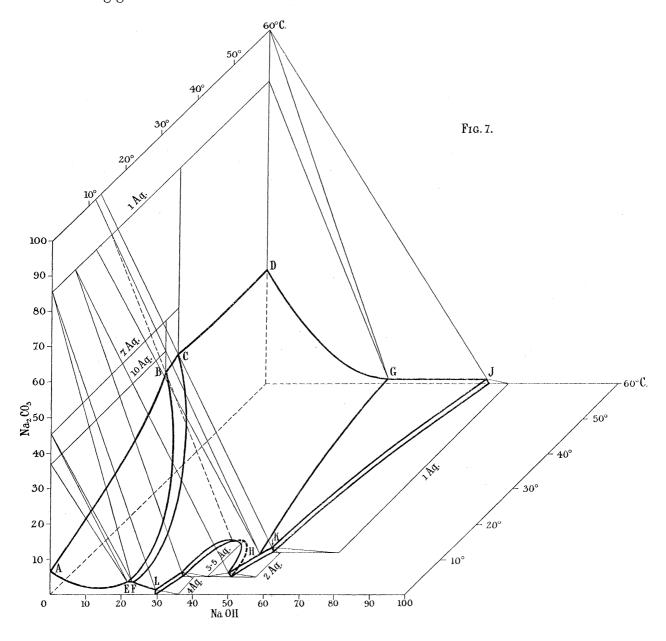
40

are shown in fig. 5. There will be no difficulty in distinguishing these if it is remembered that each volume has one "dry" side, which is a rectangle bounded by the



compositions of the solid phases and the limits of temperature, and that the corresponding points are joined to the curve representing saturation with respect to two solid phases.

The solid prisms in which three solid phases coexist are not shown.


The isotherms obtained in this system are shown in fig. 6, and the numerical results are given in Tables IX. to XVI.

A considerable amount of difficulty was experienced in strong sodium hydrate solutions,

on account of the tendency of Na₂CO₃.1H₂O, and to a far greater extent of Na₂CO₃ to form non-settling suspensions. Since the amount of Na₂CO₃ which will dissolve in such solutions is, however, very small, it is possible to gain an accurate idea of the extent of the two- and three-phase areas by analysing the milky solution and the extremely wet solid; points obtained in this manner are indicated by small squares.

After 15° C. no new three-phase areas appear. Fig. 7 shows the results plotted against temperature, including the solid-liquid volumes. The form in which the results are presented in strong NaOH solution is frankly diagrammatic, but is justifiable on the following grounds.

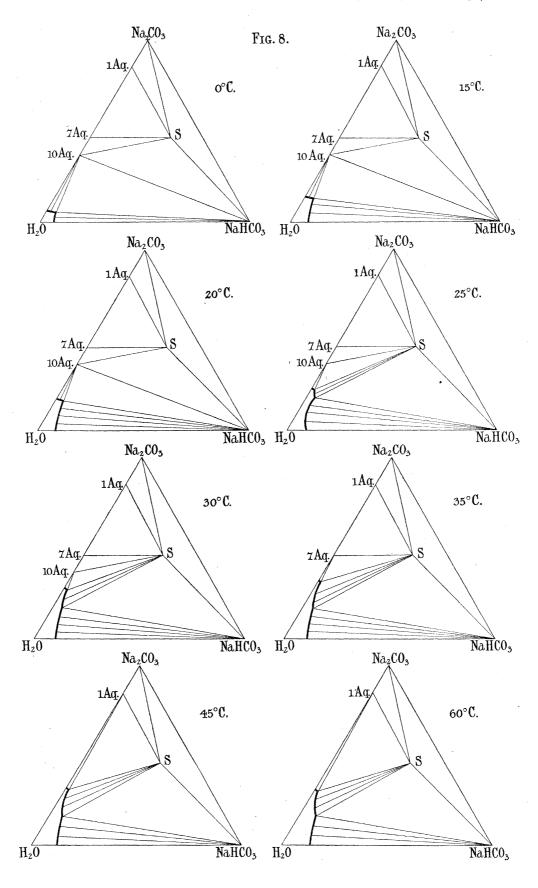
Since the amount of Na₂CO₃ which can dissolve in any really concentrated solution of NaOH is very small, the areas representing the surfaces of saturation with respect to the various phases of NaOH in the three-component system will necessarily take the form of a narrow strip as indicated.

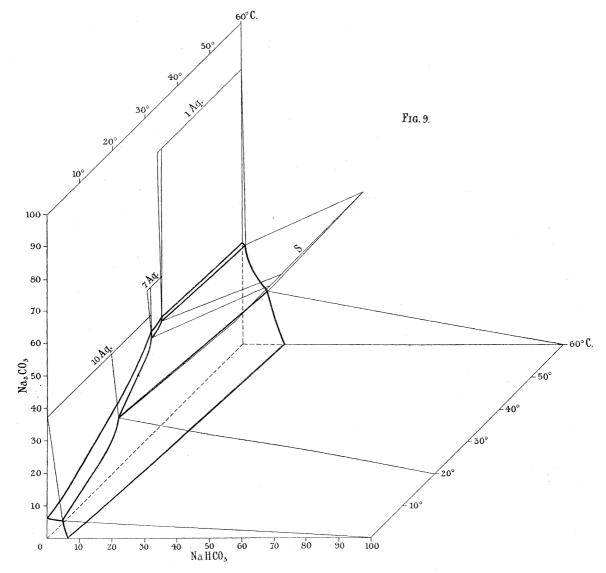
In fig. 7 we have the following surfaces, representing solutions saturated with respect to solid phases:—

ABE		•	·		•	•	•	•	•	•	•		•		·•	÷	٠.	•	$\mathrm{Na_{2}CO_{3}.10H_{2}O}$.
BCEF .			•	•	•	•				•		•	٠					•	$\mathrm{Na_{2}CO_{3}.7H_{2}O}$.
CFLHGD	•		•		•					. •	•				٠			•	$\mathrm{Na_{2}CO_{3}.1H_{2}O.}$
GJKH .							•.	•											Na ₂ CO ₃ .

The solid phases of NaOH are in equilibrium with solution very little different in composition from those of the two-component system on the base of the model.

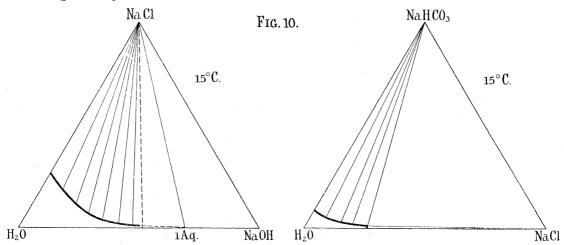
The solid-liquid volumes are plainly shown in the diagram: the two-solid liquid volumes have been omitted for the sake of clearness, as well as the complexes consisting of solids only.


(3) The System:
$$Na_2CO_3$$
— $NaHCO_3$ — H_2O .


In fig. 8 are plotted the results obtained at the various constant temperatures. experimental figures will be found in Tables XVII. to XXIV.

It will be noticed that the double salt: Na₂CO₃—NaHCO₃—2H₂O, or sodium sesquicarbonate, represented by point S, is not stable in contact with solution below 19/20° C., and that in no case is this salt in equilibrium with a solution containing the same ratio of sodium carbonate to sodium bicarbonate as itself. In consequence of this, any attempt to produce a saturated solution from this salt and water above 20° C. results in the formation of solid sodium bicarbonate before the three-phase area NaHCO₃—sesquicarbonate—solution is reached. As before, the effect of making any mixture of the components or their compounds can be immediately deduced from the diagrams.

The temperature concentration diagram is shown in fig. 9. There will be no difficulty in distinguishing the various surfaces and volume complexes in this figure.


MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

(4) The System: $NaCl-NaOH-H_2O$. (5) The System: NaHCO₃—NaCl—H₂O.

Typical isothermals of these systems which are of the simplest type are shown in fig. 10. The experimental results are given in Tables XXV. to XXXII. and XXXIII. to XL. respectively.

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

THE FOUR-COMPONENT SYSTEMS.—(a) THE SYSTEM: Na₂CO₃—NaOH—NaCl—H₂O. (b) The System: Na₂CO₃—NaHCO₃—NaCl—H₂O.

The following abbreviations are used in discussing the four-component systems:—

$$\begin{array}{c} 10 = \mathrm{Na_2CO_3.10H_2O} \, ; \, \, 7 = \mathrm{Na_2CO_3.7H_2O} \, ; \, \, 1 = \mathrm{Na_2CO_3.1H_2O} \, ; \, \, \mathrm{A} = \mathrm{Na_2CO_3} \, ; \\ \mathrm{S} = \mathrm{Na_2CO_3.NaHCO_3.2H_2O}. \end{array}$$

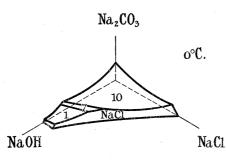
The tetrahedra which at constant temperatures represent the above four-component system have for their sides the four three-component systems which have already been discussed.

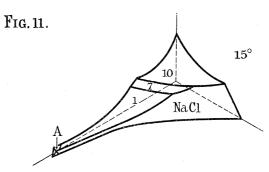
In fig. 11 will be found a representation of the irregular solids corresponding to unsaturated solutions whose upper surfaces correspond to saturation with solid phases, projected upon the Na₂CO₃—NaOH—NaCl face by the well-known formula— Schreinemakers, 'Zeit. Phys. Chem.,' vol. 65, p. 563.

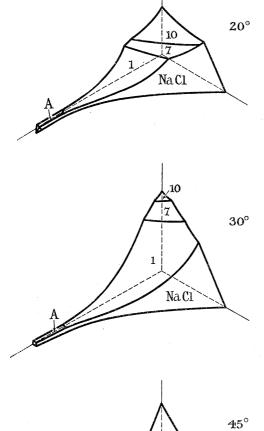
The detailed discussion of one isothermal below will enable the reader to apply similar considerations to any of those drawn in fig. 11. The experimental results for fig. 11 will be found in Tables XLI.-XLVIII.

The Isothermal of 25° C.

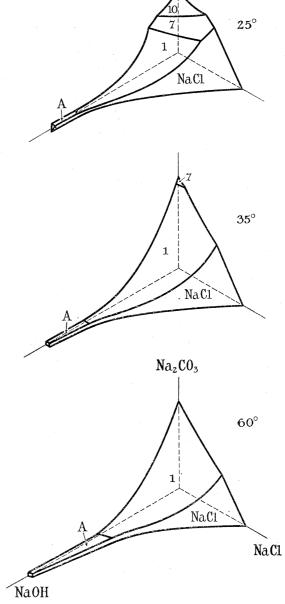
A projection of the tetrahedron representing the results obtained at 25° C. on the Na₂CO₃—NaCl—NaOH face is shown in fig. 12.

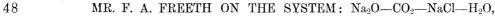

This tetrahedron is built up of:—

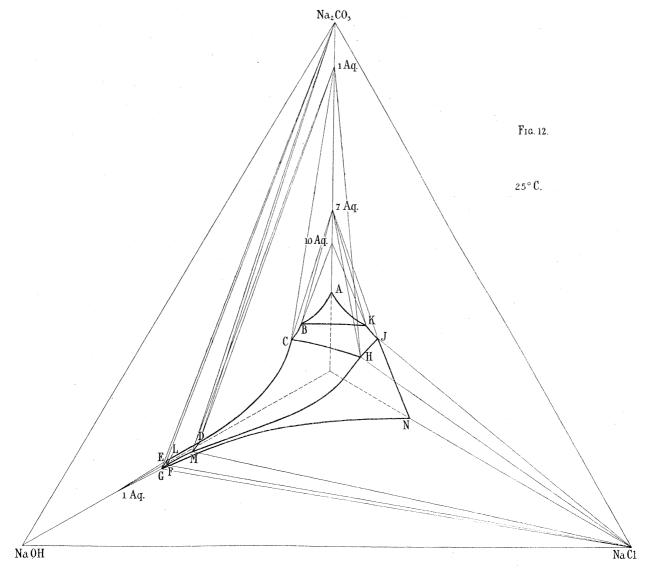

- (1) Irregular tetrahedra representing four-phase complexes: in this case either four solid phases or three solid phases and saturated solution.
- (2) Irregular tetrahedra with one curved edge, representing complexes of two solid phases and saturated solution.
- (3) Volumes best defined by the bundle of rays from the point representing the composition of the one solid phase in question to the corresponding surface of saturation.
- (4) The volume representing unsaturated solutions bounded by the three sides of the tetrahedron which terminate in the water angle and the surfaces of saturation.


Some of these volumes are shown in fig. 12: the remainder can be readily visualised from the following:—

In fig. 12 we have: One four-solid-phase complex:


$$Na_2CO_3$$
— $NaOH$ — $NaOH.1Aq$ — $NaCl.$





Naci

Three complexes of solution plus three solid phases:—

$$egin{array}{lll} {
m NaOH} + {
m A} &+ {
m NaCl} + {
m Sol.} & {
m G.} \\ {
m NaCl} &+ {
m 1} &+ {
m A} &+ {
m Sol.} & {
m M.} \\ {
m 7} &+ {
m 1} &+ {
m NaCl} &+ {
m Sol.} & {
m H.} \end{array}$$

Eight complexes of two solids plus saturated solution:—

1 + NaCl				•	٠.									line HJ.
10 + 7		•	•								,			line BK.
7+1	•				•		e						•	line CH.
$1 + \mathrm{NaCl}$, .				•							٠		line MH.

49

A + NaCl	•	•	•	•	•	•	•	•	•	•			•	•	•	line MG.
NaOH.1Aq + NaCl																line FG.
A + NaOH.1Aq .															•	line GE.
A+1												_				line DM.

The above tetrahedra will be clearly defined if it is remembered that the line joining the compositions of the two solid phases and the named curved line do not cut each other.

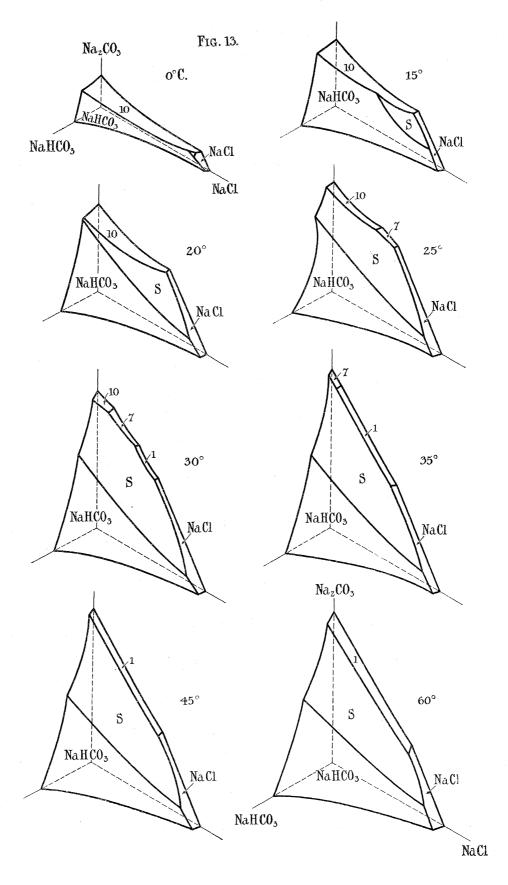
The complexes of one solid and a liquid phase are clearly shown in the diagram. The unsaturated solutions have already been dealt with.

We are now in a position to determine the quantities and compositions of the stable phases into which any composition of the components represented by a point (a) in the above tetrahedron will break up.

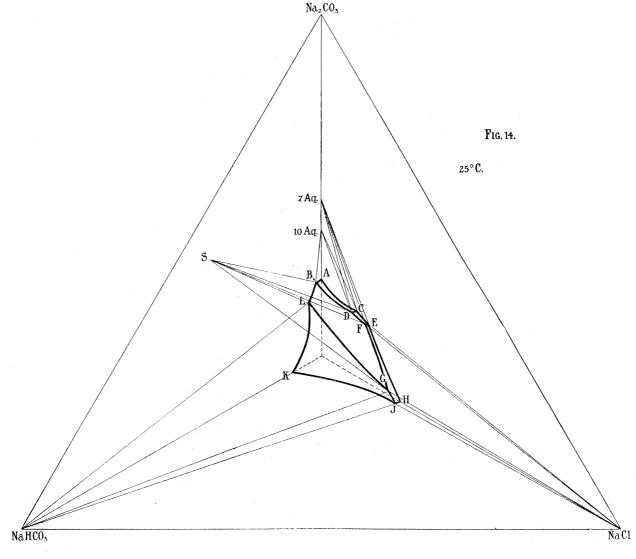
If the point (a) in question is situated in a four-phase volume, the quantities of the phases will be such that would make the point (a) the centre of gravity of the tetrahedron were the quantities of phases present represented by weights at the angles.

If the point (a) is situated in a two solid plus liquid volume, the quantities of total solid and liquid present are found by the following construction. A plane is drawn through the points representing the composition of the solid phases and the point (a). This plane will cut the curved line representing the saturated solution in a point which is the composition of the saturated solution which it is desired to find.

If we now join the composition of this saturated solution with that of the original point (a) and produce the line till it intersects the line representing mixtures of the two solid phases, in, say, point (b), the quantities of total and liquid present are inversely as the distance of point (a) from the ends of the above line.


The relative quantities of the dry solids are inversely as the distance of point (b) from the composition of the solid phases.

If point (a) is situated in a solid-liquid volume, the quantities present are inversely as the distance of point (a) on the appropriate ray of the bundle from the surface of saturation and the composition of the solid phase.


In considering this system, it must be remembered that the experimental difficulties are responsible for the slight distortion of the surfaces in the neighbourhood of saturation with respect to NaOH.1Aq, etc.

In fig. 13 will be found the projection of the surfaces of saturation and unsaturated solutions for the various isothermals on the Na₂CO₃—NaHCO₃—NaCl face of the tetrahedron: it will be noticed that sodium sesquicarbonate can exist at 0° C. in contact with saturated solution, but only over a small area of concentration.

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

The complete tetrahedron for 25° C. shown in fig. 14 is built up of the following volumes: numerous lines are omitted for the sake of clearness.

Complexes of four solid phases:—

$$S+7+1+NaCl$$
; $S+1+A+NaCl$; $S+A+NaHCO_3+NaCl$.

Three solid phases and saturated solution:—

$$10+7+S+Sol.\ D$$
 ; $7+S+NaCl+Sol.\ F$; $S+NaHCO_3+NaCl+Sol.\ B.$

Two solid phases and saturated solution:—

VOL. CCXXIII.—A.

52	MR. F.	A.	FREETH	on	THE	SYSTEM:	Na ₂ O—CO ₂ —NaCl—H ₂ O,
----	--------	----	--------	----	-----	---------	---

- 7	7 +	- NaCl						•	•								line EF.
K	3 +	- NaCl							. •					,		,	line FG.
K	3 +	- NaH(CO^3				,										line LG.
1	NaF	$HCO_3 +$	- N	Ta(\mathbb{I}	٠											line GJ.

The solid-liquid volumes are plainly shown in the diagram. The experimental figures are given in Tables XLIX. to LVI.

The considerations previously given apply to the quantities of phases formed from any mixture of the components.

SUMMARY.

Experimental figures and diagrams are given from which can be deduced the quantities and composition of the stable phases which will be formed from any mixture of the components at 0°, 10°, 15°, 20°, 25°, 30°, 35°, 45°, and 60° C.

INDEX TO THE TABLES.

	PAGE
Tables I. to VIII.—Na ₂ CO ₃ —NaCl—H ₂ O	52
Tables IX. to XVI.—Na ₂ CO ₃ —NaOH—H ₂ O	56
Tables XVII. to XXIV.—Na ₂ CO ₃ —NaHCO ₃ —H ₂ O	62
Tables XXV. to XXXII.—NaOH—NaCl—H ₂ O	66
Tables XXXIII. to XL.—NaHCO ₃ —NaCl—H ₂ O	70
Tables XLI. to XLVIII.—Na ₂ CO ₃ —NaOH—NaCl—H ₂ O	74
Tables XLIX. to LVI.—Na ₂ CO ₃ —NaHCO ₃ —NaCl—H ₂ O	- 80

Table I.—The System : Na_2CO_3 —NaCl— H_2O . Temperature : 0° C.

	Compe	osition of so	lution.	Com	position of	rest.
Solid phase.	Gran	nmes per 10	00 gr.	Gran	nmes per 10	00 gr.
	$\mathrm{Na_2CO_3}$	NaCl	H ₂ O	Na ₂ CO ₃	NaCl	H ₂ O
Na ₂ CO ₃ .10H ₂ O	1 1		93.4		***************************************	
	4.3	4.5	91.2	12.0	$3 \cdot 2$	84.8
	$\begin{vmatrix} 3\cdot7 \\ 3\cdot1 \end{vmatrix}$	$8 \cdot 2 \\ 12 \cdot 3$	88·1 84·6	$\begin{array}{ c c c }\hline 11.5 \\ 11.2 \end{array}$	$6 \cdot 2$ $9 \cdot 1$	$82 \cdot 3 \\ 79 \cdot 7$
	$2 \cdot 9$	12.3 15.6	81.5	10.9	11.9	$77 \cdot 2$
	2.8	$20 \cdot 4$	76.8	10.4	$15 \cdot 7$	$73 \cdot 9$
$NaCl + Na_2CO_3.10H_2O \ . \ . \ . \ .$	2.8	$24 \cdot 2$	73.0	9.9	19.4	70.7
NaCl	1.1	$25 \cdot 1$	73.8	1.1	$28 \cdot 3$	70.6
		$26 \cdot 3$	$73 \cdot 7$		-	

Table II.—The System: Na₂CO₃—NaCl—H₂O.

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 15° C.

	Compo	osition of so	ution.	Com	position of	rest.
Solid phase.	Grai	mmes per 10	00 gr.	Gran	nmes per 10	0 gr.
	$\mathrm{Na_2CO_3}$	NaCl	${ m H_2O}$	Na ₂ CO ₃	NaCl	${ m H_2O}$
$\mathrm{Na_2CO_3.10H_2O}$	$14 \cdot 1 \\ 9 \cdot 9 \\ 8 \cdot 7$	$\begin{array}{c} -\\ 8 \cdot 9\\ 14 \cdot 7\end{array}$	$85 \cdot 9 \\ 81 \cdot 2 \\ 76 \cdot 6$	$34 \cdot 0$ $33 \cdot 6$	0.8 1.5	$\begin{array}{c}\\ 65\cdot 2\\ 64\cdot 9\end{array}$
${ m Na_2CO_3.10H_2O} + { m NaCl}$	$9\cdot 2$	$20 \cdot 2$	70.6	23.4	$27 \cdot 1$	49.5
NaCl	3·5 —	$24 \cdot 0$ $26 \cdot 3$	$72 \cdot 5$ $73 \cdot 7$	0.2	94.6	5.2

Table III.—The System: Na_2CO_3 —NaCl— H_2O .

Temperature: 20° C.

	Comp	osition of so	lution.	Com	position of	rest.
Solid phase.	Grar	nmes per 10	00 gr.	Gran	ames per 10	00 gr.
	${ m Na_2CO_3}$	NaCl	H ₂ O	Na ₂ CO ₃	NaCl	$ m H_2O$
Na ₂ CO ₃ .10H ₂ O	$17 \cdot 6 \\ 15 \cdot 5$	4.0	82·4 80·5			-
	$13 \cdot 3 \\ 14 \cdot 1 \\ 12 \cdot 9$	$7 \cdot 7$ $12 \cdot 8$	$\begin{array}{c c} 78 \cdot 2 \\ 74 \cdot 3 \end{array}$			***************************************
$Na_2CO_3.10H_2O + NaCl \dots$	13.5	$17 \cdot 4$	69 • 1			
NaCl	$6 \cdot 9$ $9 \cdot 5$	$22 \cdot 0$ $20 \cdot 3$	$\begin{array}{c c} 71 \cdot 1 \\ 70 \cdot 2 \end{array}$			
	11.5	$18 \cdot 9$ $26 \cdot 4$	$\begin{array}{c} 69 \cdot 6 \\ 73 \cdot 6 \end{array}$	-		
		·				

54

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

Table IV.—The System : Na_2CO_3 —NaCl— H_2O . Temperature: 25° C.

	Compe	osition of so	lution.	Com	position of	rest.
Solid phase.	Grar	nmes per 10	00 gr.	Gran	nmes per 10	0 gr.
	${ m Na_2CO_3}$	NaCl	${ m H_2O}$	$\mathrm{Na_2CO_3}$	NaCl	$ m H_2O$
Na ₂ CO ₃ .10H ₂ O	22·7 19·6 18·8	5·6 10·8	$77 \cdot 3$ $74 \cdot 8$ $70 \cdot 4$	34·0 33·9	0·9 1·7	$65 \cdot 1 \\ 64 \cdot 4$
$\mathrm{Na_2CO_3.10H_2O} + \mathrm{Na_2CO_3.7H_2O}$	19.0	11.8	69 · 2	35.4	1.6	63.0
${ m Na_2CO_3.7H_2O}$	18.4	13.0	68.6	41.1	1.8	$57 \cdot 1$
${ m Na_2CO_3.7H_2O+NaCl}$	$17 \cdot 3 \\ 17 \cdot 2$	$15 \cdot 5$ $15 \cdot 4$	$67 \cdot 2$ $67 \cdot 4$	20·0 39·5	$\substack{48\cdot 2 \\ 5\cdot 7}$	31·8 54·8
NaCl	7.9	$\begin{array}{c} 21 \cdot 3 \\ 26 \cdot 4 \end{array}$	$70 \cdot 8 \\ 73 \cdot 6$	0.9	90.2	8.9

Table V.—The System: Na₂CO₃—NaCl—H₂O. Temperature: 30° C.

	Comp	osition of so	lution.	Com	position of	rest.
Solid phase.	Gran	nmes per 10	00 gr.	Gran	ames per 10	0 gr.
	${ m Na_2CO_3}$	NaCl	H ₂ O	Na ₂ CO ₃	NaCl	H ₂ O .
Na ₂ CO ₃ .10H ₂ O	$28 \cdot 5$ $27 \cdot 0$	3.7	71·5 69·3	35.3	0.4	64.3
Na ₂ CO ₃ .7H ₂ O	$26 \cdot 6$ $24 \cdot 6$ $22 \cdot 7$	$\begin{array}{c c} 4 \cdot 2 \\ 7 \cdot 2 \\ 9 \cdot 3 \end{array}$	$ \begin{array}{c c} 69 \cdot 2 \\ 68 \cdot 2 \\ 68 \cdot 0 \end{array} $	43·0 41·9 40·7	$0 \cdot 4 \\ 1 \cdot 2 \\ 2 \cdot 5$	56·6 56·9 56·8
Na ₂ CO ₃ .1H ₂ O	$21 \cdot 9 \\ 20 \cdot 5$	10·4 11·1	67·7 68·4	75·7 78·9	$1 \cdot 6$ $1 \cdot 5$	$\begin{array}{c} 22 \cdot 7 \\ 19 \cdot 6 \end{array}$
$ m Na_2CO_3.7H_2O + NaCl$ *	$21 \cdot 2$	12.9	65.9	35.8	11.6	52.6
$Na_2CO_3.1H_2O + NaCl$	17 7	15 0	67.3	61 · 1	13.6	25.3
NaCl	5·0 —	$\begin{array}{c} 22 \cdot 7 \\ 26 \cdot 5 \end{array}$	$\begin{array}{c} 72 \cdot 3 \\ 73 \cdot 5 \end{array}$	0.5	89.5	10.0
$Na_{2}CO_{3}.10H_{2}O + Na_{2}CO_{3}.7H_{2}O$	26.9	3.9	69.2			
${ m Na_2CO_3.7H_2O + Na_2CO_3.1H_2O}$	22.5	10.2	67.3			

^{*} Metastable.

Table VI.—The System : Na_2CO_3 —NaCl— H_2O .

Temperature: 35° C.

Compo	sition of sol	ution.	Composition of rest.			
Grammes per 100 gr.			Grammes per 100 gr.			
Na ₂ CO ₃	NaCl	${ m H_2O}$	Na ₂ CO ₃	NaCl	H ₂ O	
$\begin{array}{c} 32 \cdot 9 \\ 31 \cdot 5 \end{array}$		$\begin{array}{c} 67 \cdot 1 \\ 66 \cdot 5 \end{array}$	42.3	0.5	57.2	
31.0	$2 \cdot 5$	66.5	51.9	0.8	47.3	
$30 \cdot 2$ $25 \cdot 5$	$2 \cdot 9 \\ 7 \cdot 1$	66·9 67·4	75·5 65·0	$0.5 \\ 2.5$	24·0 32·5	
16.8	16.1	67 · 1	43.7	$32 \cdot 9$	23.4	
$7 \cdot 4$ $4 \cdot 0$	$\begin{array}{c} 21 \cdot 7 \\ 24 \cdot 0 \\ 26 \cdot 6 \end{array}$	70.9 72.0	1·0 0·8	88·4 84·5	10·6 14·7	
	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$					

Table VII.—The System : Na_2CO_3 —NaCl— H_2O_{\bullet}

Temperature: 45° C.

	Compo	osition of so	lution.	Composition of rest. Grammes per 100 gr.			
Solid phase.	Gran	ames per 10	0 gr.				
	Na ₂ CO ₃	NaCl	H ₂ O	Na ₂ CO ₃	NaCl	$\mathrm{H_2O}$	
Na ₂ CO ₃ .1H ₂ O	$32 \cdot 2$		67 8				
1142003.11120	28.2	3.9	67.9				
	$24 \cdot 4$	$7\cdot 3$	68.3	71.9	1.8	$26 \cdot 3$	
	$20 \cdot 7$	11.1	68.2	66.4	3.3	30.3	
	$17 \cdot 6$	$14 \cdot 6$	67.8	63.5	4.8	$31 \cdot 7$	
${ m Na_2CO_3.1H_2O+NaCl}$	15.0	17.4	67.6		-		
NaCl	10.3	$20 \cdot 2$	69.5	0.7	93.5	5.8	
	3.6	$24 \cdot 2$	72.2	0.2	91.8	8.0	
		$26 \cdot 7$	$73 \cdot 3$. - , -		

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

TABLE VIII.—The System: Na₂CO₃—NaCl—H₂O.

Temperature: 60° C.

· ·	Comp	osition of so	lution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	${ m Na_2CO_3}$	NaCl	H ₂ O	$\mathrm{Na_{2}CO_{3}}$	NaCl	H ₂ O	
Na ₂ CO ₃ .1H ₂ O	$31.8 \\ 24.0 \\ 20.2$	7.2	68·2 68·8				
÷	$20 \cdot 2 \\ 16 \cdot 6$	$10 \cdot 9$ $14 \cdot 5$	$\begin{array}{c c} 68 \cdot 9 \\ 68 \cdot 9 \end{array}$		and the same of th		
${ m Na_2CO_3.1H_2O+NaCl}$	13.9	17.8	68.3				
NaCl		27.0	73.0			<u></u>	

Table IX.—The System : Na_2CO_3 —NaOH— H_2O .

Temperature: 0° C.

	Compo	osition of sol	lution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	Na ₂ CO ₃	NaOH	${ m H_2O}$	Na ₂ CO ₃	NaOH	H ₂ O	
$\mathrm{Na_2CO_3.10H_2O}$	$6 \cdot 4 \\ 2 \cdot 6 \\ 2 \cdot 2 \\ 2 \cdot 7$	8·1 18·4 20·9	$93 \cdot 6 \\ 89 \cdot 3 \\ 79 \cdot 4 \\ 76 \cdot 4$	$ \begin{array}{c} -28 \cdot 9 \\ 24 \cdot 3 \\ 22 \cdot 2 \end{array} $	$\frac{-}{2 \cdot 1}$ $6 \cdot 3$ $8 \cdot 8$	69·0 69·4 69·0	
$\text{Na}_2\text{CO}_3.10\text{H}_2\text{O} + \text{Na}_2\text{CO}_3.7\text{H}_2\text{O}$	3.1	22.3	$74 \cdot 6$	20.2	$11 \cdot 2$	68-6	
$\mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.1H_2O}$	3.1	23.0	$73 \cdot 9$	39.5	$5 \cdot 3$	55.2	
Na ₂ CO ₃ .H ₂ O	1.2	28.9	$69 \cdot 9$	50.3	11.9	37.8	
NaOH.4H ₂ O	Performance	29.6	$70 \cdot 4$				

Table X—The System : Na_2CO_3 —NaOH— H_2O .

Temperature: 15° C.

	Composition of solution.			Composition of rest.			
Solid phase.	Gran	nmes per 10	0 gr.	Grammes per 100 gr.			
	Na ₂ CO ₃	NaOH	$\mathrm{H_2O}$	$\mathrm{Na_2CO_3}$	NaOH	H ₂ O	
Na ₂ CO ₃ .10H ₂ O	$14 \cdot 1 \\ 10 \cdot 1 \\ 7 \cdot 5$	 4·8 13·8	85·9 85·1 78·7	$\begin{array}{c} - \\ 35 \cdot 2 \\ 33 \cdot 2 \end{array}$	0·1 1·6	$\begin{array}{c} -64\cdot 7 \\ 65\cdot 2 \end{array}$	
$\mathrm{Na_2CO_3.10H_2O} + \mathrm{Na_2CO_3.7H_2O}$	8.9	17.0	$74 \cdot 1$	35.6	4.3	60.1	
Na ₂ CO ₃ .7H ₂ O	$7 \cdot 7$	19.3	73.0	38.8	3.4	57 8	
$\mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.1H_2O}$	7.9	19.4	$72 \cdot 7$	65.5	3.5	31.0	
Na ₂ CO ₃ .1H ₂ O	$6 \cdot 3$ $4 \cdot 1$ $1 \cdot 2$ $0 \cdot 2$	$20 \cdot 8$ $23 \cdot 9$ $30 \cdot 6$ $44 \cdot 9$	$72 \cdot 9$ $72 \cdot 0$ $68 \cdot 2$ $54 \cdot 9$	$\begin{array}{c c} 66.5 \\ 61.2 \\ \\ 42.9 \end{array}$	$egin{array}{c} 4 \cdot 5 \ 6 \cdot 7 \ \ 22 \cdot 5 \end{array}$	$ \begin{array}{r} 29 \cdot 0 \\ 32 \cdot 1 \\ \hline 34 \cdot 6 \end{array} $	
$Na_2CO_3.1H_2O + Na_2CO_3$	0.6	$47 \cdot 3$	$52 \cdot 1$	39.0	28.0	33.0	
$\mathrm{Na_2CO_3}$	0.7	49.8	49.5			- 1 	
NaOH.1H ₂ O		$51 \cdot 2$	48.8				
NaOH.3·5H ₂ O, L and B		$37 \cdot 5$ $41 \cdot 5$	62·5 58·5			TORRINGENIA (TORRINGENIA)	

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

Table XI.—The System : Na_2CO_3 —NaOH— H_2O .

Temperature: 20° C.

	Grammes per 100 gr.			Composition of rest. Grammes per 100 gr.			
Solid phase.							
	${ m Na_2CO_3}$	NaOH	${ m H_2O}$	Na ₂ CO ₃	NaOH	$\mathrm{H_2O}$	
Na ₂ CO ₃ .10H ₂ O	$18 \cdot 0$ $12 \cdot 9$ $11 \cdot 6$	$\frac{-}{6 \cdot 3}$ $12 \cdot 7$	$82.0 \\ 80.8 \\ 75.7$	$\begin{array}{c} - \\ 36 \cdot 9 \\ 32 \cdot 6 \end{array}$	$0 \cdot 3$ $2 \cdot 3$	$62 \cdot 8 \\ 65 \cdot 1$	
$Na_2CO_3.10H_2O + Na_2CO_3.7H_2O$	12.4	13.4	$74 \cdot 2$	42.2	1.2	$56 \cdot 6$	
Na ₂ CO ₃ .7H ₂ O	11.7	14.7	$73 \cdot 6$	42.7	1.1	$56 \cdot 2$	
$Na_{2}CO_{3}.7H_{2}O + Na_{2}CO_{3}.1H_{2}O$	11.1	16.2	72.7	50.1	2.7	47.2	
Na ₂ CO ₃ .1H ₂ O	$5 \cdot 2$ $1 \cdot 1$ $0 \cdot 3$	$22 \cdot 0 \\ 29 \cdot 7 \\ 39 \cdot 8$	$72 \cdot 8$ $69 \cdot 2$ $59 \cdot 9$	$61 \cdot 9$ $48 \cdot 6$ $51 \cdot 2$	$\begin{array}{c} 6 \cdot 3 \\ 12 \cdot 8 \\ 16 \cdot 3 \end{array}$	$31.8 \\ 38.6 \\ 32.5$	
$Na_2CO_3.1H_2O + Na_2CO_3$	0.3	41.5	$58 \cdot 2$		-	€magazzon.	
Na ₂ CO ₃	*5·4 *9·6	43·9 43·8	$50 \cdot 7 \\ 46 \cdot 6$	30·9 19·9	$32 \cdot 2$ $38 \cdot 8$	$36 \cdot 9$ $41 \cdot 3$	
NaOH.1H ₂ O		52.1	$47 \cdot 9$		-		

^{*} This solution was not clear.

Table XII.—The System : Na_2CO_3 —NaOH— H_2O .

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 25° C.

	Compo	osition of sol	ution.	Composition of rest.			
Solid phase.	Gran	nmes per 100) gr.	Grammes per 100 gr.			
	${ m Na_2CO_3}$	NaOH	${ m H_2O}$	Na ₂ CO ₃	NaOH	${ m H_2O}$	
Na ₂ CO ₃ .10H ₂ O	$22 \cdot 7$ $18 \cdot 2$ $18 \cdot 1$	$\frac{-}{5\cdot 4}$ $7\cdot 0$	$77 \cdot 3$ $76 \cdot 4$ $74 \cdot 9$	$\begin{array}{c} - \\ 36 \cdot 1 \\ 35 \cdot 4 \end{array}$	 0·7 0·6	$\begin{array}{c} -63 \cdot 2 \\ 64 \cdot 0 \end{array}$	
$\mathrm{Na_2CO_3.10H_2O} + \mathrm{Na_2CO_3.7H_2O}$	18.0	9.3	$72 \cdot 7$				
${ m Na_2CO_3.7H_2O}$	$^{*21 \cdot 0}_{17 \cdot 6}_{16 \cdot 7}$	5·8 9·7 10·7	$73 \cdot 2$ $72 \cdot 7$ $72 \cdot 6$	$ \begin{array}{c c} 37 \cdot 6 \\ 41 \cdot 4 \\ 43 \cdot 2 \end{array} $	$1.6 \\ 1.5 \\ 1.0$	$60.8 \\ 57.1 \\ 55.8$	
$\mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.1H_2O}$	$15 \cdot 4$	12.7	$71 \cdot 9$	36.9	4.7	$58 \cdot 4$	
${ m Na_2CO_3.1H_2O}$	$\begin{array}{c} 1\cdot 2 \\ 0\cdot 5 \end{array}$	30·6 37·5	$68 \cdot 2$ $62 \cdot 0$	49·1 49·6	13·3 16·0	$37 \cdot 6$ $34 \cdot 4$	
$Na_2CO_3.1H_2O + Na_2CO_3 \dots$	0.5	42.4	$57 \cdot 1$	60.9	16.2	$22 \cdot 9$	
$ m Na_2CO_3$	†4.5	47.1	48.4	36.4	31 · 4	32.2	
$NaOH + 1H_2O$		53.3	46.7				

^{*} Supersaturated solution.

[†] This solution was not clear.

MR. F. A. FREETH ON THE SYSTEM: Na₂O-CO₂-NaCl-H₂O,

Table XIII.—The System : Na_2CO_3 —NaOH— H_2O .

Temperature: 30° C.

	Comp	osition of so	olution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaOH	H ₂ O	Na ₂ CO ₃	NaOH	H ₂ O	
Na ₂ CO ₃ .10H ₂ O	$28 \cdot 4$ $26 \cdot 5$	3.1	71·6 70·4	35.8	 0·4	63.8	
$\mathrm{Na_2CO_3.10H_2O} + \mathrm{Na_2CO_3.7H_2O}$	$26 \cdot 7$	3.5	69.8				
$Na_2CO_3.7H_2O$	$25 \cdot 7 \\ 24 \cdot 3$	$\begin{array}{c c} 4 \cdot 0 \\ 5 \cdot 5 \end{array}$	$\begin{array}{c c} 70 \cdot 3 \\ 70 \cdot 2 \end{array}$	43·8 42·2	$0 \cdot 2$ $1 \cdot 1$	56·0 56·7	
$\mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.1H_2O}$	$21 \cdot 9$	7.9	70.2	40.2	$2 \cdot 1$	57.7	
Na ₂ CO ₃ .1H ₂ O	$ \begin{array}{c} 19 \cdot 0 \\ 13 \cdot 7 \\ 0 \cdot 9 \end{array} $	$9.8 \\ 13.8 \\ 31.2$	$71 \cdot 2$ $72 \cdot 5$ $67 \cdot 9$	$\begin{array}{c} 79 \cdot 0 \\ 71 \cdot 5 \\ 52 \cdot 2 \end{array}$	0.8 2.7 12.4	$20 \cdot 2 \\ 25 \cdot 8 \\ 35 \cdot 4$	
$\mathrm{Na_2CO_3.1H_2O} + \mathrm{Na_2CO_3}$	*15·1 0·5	$35 \cdot 0$ $41 \cdot 6$	$49 \cdot 9 \\ 57 \cdot 9$	56.5	14.6	28·9 —	
Na ₂ CO ₃	*2·5 *6·1	$\begin{array}{c} 44\cdot 5 \\ 49\cdot 1 \end{array}$	$53 \cdot 0$ $44 \cdot 8$	$\begin{bmatrix} 54 \cdot 2 \\ 51 \cdot 6 \end{bmatrix}$	$20 \cdot 9$ $25 \cdot 6$	$egin{array}{c} 24 \cdot 9 \ 22 \cdot 8 \end{array}$	
NaOH.1H ₂ O		54.3	$45 \cdot 7$				

^{*} The solution was not clear.

TABLE XIV.—The System: Na₂CO₃—NaOH—H₂O.

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 35° C.

	Compo	osition of sol	ution.	Composition of rest. Grammes per 100 gr.			
Solid phase.	Gran	nmes per 100) gr.				
	Na ₂ CO ₃	NaOH	H ₂ O	Na ₂ CO ₃	NaOH	${ m H_2O}$	
Na ₂ CO ₃ .7H ₂ O	32.9		67 · 1	Section 1			
$\mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.1H_2O}$	32.0	0.6	$67 \cdot 4$	63.8		$36 \cdot 2$	
Na ₂ CO ₃ .1H ₂ O	$25 \cdot 3$ $15 \cdot 2$ $7 \cdot 5$ $1 \cdot 9$ $0 \cdot 5$	$4 \cdot 9$ $11 \cdot 9$ $18 \cdot 7$ $27 \cdot 5$ $34 \cdot 2$	69.8 72.9 73.8 70.6 65.3	$73 \cdot 7$ $69 \cdot 9$ $69 \cdot 4$ $65 \cdot 5$ $66 \cdot 0$	$0.8 \\ 2.6 \\ 3.4 \\ 6.6 \\ 7.7$	$25 \cdot 5$ $27 \cdot 5$ $27 \cdot 2$ $27 \cdot 9$ $26 \cdot 3$	
$\mathrm{Na_2CO_3.1H_2O} + \mathrm{Na_2CO_3}$	0.5	39.2	60.3	66.7	9.2	$24 \cdot 1$	
Na ₂ CO ₃	$0.2 \\ 0.2 \\ 0.2$	$ \begin{array}{r} 39.5 \\ 44.8 \\ 50.2 \end{array} $	$60 \cdot 3$ $55 \cdot 0$ $49 \cdot 6$	57.3	16.6	26·1 —	
NaOH.1H ₂ O		55.4	44.6		Names 196		

Table XV.—The System: Na₂CO₃—NaOH—H₂O. Temperature: 45° C.

	Composition of solution.			Composition of rest.		
Solid phase.	Gran	nmes per 10	0 gr.	Grammes per 100 gr.		
	$\mathrm{Na_2CO_3}$	NaOH	$\mathrm{H_2O}$	Na ₂ CO ₃	NaOH	$\mathrm{H_2O}$
Na ₂ CO ₃ .1H ₂ O	$32 \cdot 2 \\ 14 \cdot 5 \\ 1 \cdot 4 \\ 0 \cdot 5$	$-12 \cdot 1$ $28 \cdot 1$ $37 \cdot 8$	$67.8 \\ 73.4 \\ 70.5 \\ 61.7$	$67 \cdot 9$ $65 \cdot 8$ $57 \cdot 8$	$2 \cdot 7 \\ 6 \cdot 2 \\ 12 \cdot 4$	$ \begin{array}{c} - \\ 29 \cdot 4 \\ 28 \cdot 0 \\ 29 \cdot 8 \end{array} $
$Na_2CO_3.1H_2O + Na_2CO_3$	0.5	38.3	$61 \cdot 2$	50.1	19.0	30.9
Na ₂ CO ₃	$\begin{array}{c} 0.5 \\ 0.2 \end{array}$	47·0 52·4	$52 \cdot 5 \\ 47 \cdot 4$	45·8 39·3	$\begin{array}{c} 25 \cdot 1 \\ 31 \cdot 9 \end{array}$	$29 \cdot 1$ $28 \cdot 8$
NaOH.1H ₂ O		57.8	$42\cdot 2$			

Table XVI.—The System : Na_2CO_3 —NaOH— H_2O .

Temperature: 60° C.

	Comp	Composition of solution.			Composition of rest.		
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaOH	${ m H_2O}$	$\mathrm{Na_2CO_3}$	NaOH	H ₂ O	
Na ₂ CO ₃ .1H ₂ O	31.8 22.5 14.2 6.9 1.1	$\begin{array}{c} \\ 6 \cdot 1 \\ 12 \cdot 2 \\ 19 \cdot 4 \\ 32 \cdot 6 \end{array}$	$ \begin{array}{c c} 68 \cdot 2 \\ 71 \cdot 4 \\ 73 \cdot 6 \\ 73 \cdot 7 \\ 66 \cdot 3 \end{array} $	$\begin{array}{c} - \\ - \\ 66 \cdot 3 \\ 56 \cdot 2 \\ 62 \cdot 7 \end{array}$	$\frac{-}{3 \cdot 2}$ $7 \cdot 0$ $8 \cdot 6$	30·5 36·7 28·7	
$\mathrm{Na_2CO_3.1H_2O} + \mathrm{Na_2CO_3}$	0.8	$34 \cdot 4$	64.8	59.3	12.0	28.7	
Na ₂ CO ₃	$\begin{array}{c} 0 \cdot 7 \\ 0 \cdot 3 \\ 0 \cdot 3 \end{array}$	$35 \cdot 4$ $42 \cdot 3$ $52 \cdot 2$	$63 \cdot 9$ $57 \cdot 4$ $47 \cdot 5$	61·8 64·3 48·6	$13 \cdot 7$ $14 \cdot 9$ $27 \cdot 1$	$24 \cdot 5 \\ 20 \cdot 8 \\ 24 \cdot 3$	
NaOH.1H ₂ O		63.5	36.5				

Table XVII.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O .

Temperature 0° C.

	Comp	osition of so	lution.	Composition of rest.		
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.		
	$\mathrm{Na_2CO_3}$	NaHCO ₃	H ₂ O	Na ₂ CO ₃	NaHCO ₃	H ₂ O
NaHCO ₃	4.0	$\begin{array}{c} 6\cdot 5 \\ 5\cdot 1 \end{array}$	93·5 90·9	1.1	82.5	16.4
$\mathrm{NaHCO_3} + \mathrm{Na_2CO_3.10H_2O}$	$5 \cdot 6$	4.6	89.8	24.7	24 · 6	$50 \cdot 7$
Na ₂ CO ₃ .10H ₂ O	$5 \cdot 9$ $6 \cdot 4$	1.4	$92 \cdot 6$ $93 \cdot 6$	33·5 —	0.3	66 · 2

Table XVIII.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O .

Temperature 15° C.

	Comp	osition of sol	ution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaHCO ₃	H ₂ O	$\mathrm{Na_2CO_3}$	NaHCO ₃	${ m H_2O}$	
NaHCO ₃	6.0	8·1 6·0	91·9 88·0	$\frac{}{1\cdot 2}$	81.5	17.3	
$NaHCO_3 + Na_2CO_3.10H_2O$	13.3	4.3	$82 \cdot 3$	27.0	16.2	56.8	
Na ₂ CO ₃ .10H ₂ O	13·8 14·1	1.8	$84 \cdot 4 \\ 85 \cdot 9$	28.7	0.5	70.8	

Table XIX.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O .

Temperature: 20° C.

	Composition of solution.				Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.				
	$\mathrm{Na_2CO_3}$	${ m NaHCO_3}$	${ m H_2O}$	Na ₂ CO ₃	NaHCO ₃	${ m H_2O}$		
NaHCO ₃	$\frac{-}{3 \cdot 5}$ $6 \cdot 3$	$8 \cdot 7$ $7 \cdot 2$ $6 \cdot 5$	$91 \cdot 2$ $89 \cdot 2$ $87 \cdot 2$	0·4 0·1	87·9 89·2	11·7 10·6		
$\mathrm{Na_2CO_3.10H_2O} + \mathrm{NaHCO_3}$	$17 \cdot 1 \\ 17 \cdot 0$	$4 \cdot 0$ $4 \cdot 0$	$78 \cdot 9$ $78 \cdot 9$	$\begin{array}{c c} 21 \cdot 2 \\ 26 \cdot 0 \end{array}$	$37 \cdot 6$ $24 \cdot 3$	$41 \cdot 1 \\ 49 \cdot 6$		
Na ₂ CO ₃ .10H ₂ O	$17 \cdot 3 \\ 18 \cdot 0$	2.9	79·8 82·0	34.2	0.6	65·1		

64

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

Table XX.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O . Temperature: 25° C.

	Composition of solution.			Composition of rest.			
Solid phase.	Grai	mmes per 10	0 gr.	Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaHCO ₃	$_{ m H_2O}$	Na ₂ CO ₃	NaHCO ₃	H ₂ O	
NaHCO ₃	6.1	9.3	90·6 88·9				
	10.0 16.7	3.9	86·1 80·0	_	distribution of the state of th		
${ m NaHCO_3 + Na_2CO_3.} \ { m NaHCO_3.2H_2O}$	17.8	4 · 1	7 8·1	27.8	21 · 7	50.4	
${ m NaHCO_3 + Na_2CO_3.} { m NaHCO_3.2H_2O}$	18.0	4.0	78.0	22.9	33.5	43.5	
$Na_2CO_3.NaHCO_3.2H_2O$	20.8	2.5	$76 \cdot 7$	31.7	16.2	$52 \cdot 0$	
$\begin{bmatrix} \mathrm{Na_2CO_3.NaHCO_3.2H_2O} + \\ \mathrm{Na_2CO_3.10H_2O} \end{bmatrix}$	$22 \cdot 6$	1.5	75.9	34.0	6.9	59.0	
Na ₂ CO ₃ .10H ₂ O	22.7		77.3			and the same of th	

Table XXI.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O . Temperature : 30° C.

Composition of solution.			Composition of rest.			
Gran	mmes per 10	0 gr.	Grammes per 100 gr.			
${ m Na_2CO_3}$	NaHCO ₃	$_{12}$ O	Na ₂ CO ₃	NaHCO ₃	${ m H_2O}$	
	9.9	90·0 90·1	annual and a second a second and a second and a second and a second and a second an			
$9 \cdot 7$ $17 \cdot 5$	$6 \cdot 3$ $4 \cdot 6$	$83 \cdot 9$ $77 \cdot 8$	$\begin{array}{ c c }\hline 2\cdot 6 \\ 3\cdot 5 \end{array}$	$\begin{array}{c c} 84 \cdot 1 \\ 80 \cdot 2 \end{array}$	$\frac{13 \cdot 3}{16 \cdot 3}$.	
$17 \cdot 6$	4.3	$78 \cdot 1$	27 · 1	35.7	$37 \cdot 1$	
$18 \cdot 3$ $26 \cdot 1$ $26 \cdot 5$	$\begin{array}{c c} 3.8 \\ 1.2 \\ 1.1 \end{array}$	$77.8 \\ 72.7 \\ 72.3$	$ \begin{array}{r} 29 \cdot 6 \\ 33 \cdot 6 \\ 34 \cdot 5 \end{array} $	$16.8 \\ 13.3 \\ 14.2$	$53 \cdot 6$ $53 \cdot 1$ $51 \cdot 2$	
	1.3	71.6				
$\begin{array}{c} 27 \cdot 5 \\ 28 \cdot 45 \end{array}$	0.8	$71 \cdot 6$ $71 \cdot 5$	35·5 —	0.4	64.0	
	Grad Na ₂ CO ₃ 0.8 9.7 17.5 17.6 18.3 26.1 26.5 27.1		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c }\hline & Grammes per 100 \ gr. & Grammes per 10\\ \hline \hline Na_2CO_3 & NaHCO_3 & H_2O & Na_2CO_3 & NaHCO_3\\ \hline \hline - & 9\cdot 9 & 90\cdot 0 & - & - & -\\ \hline 0\cdot 8 & 9\cdot 1 & 90\cdot 1 & - & -\\ 9\cdot 7 & 6\cdot 3 & 83\cdot 9 & 2\cdot 6 & 84\cdot 1\\ 17\cdot 5 & 4\cdot 6 & 77\cdot 8 & 3\cdot 5 & 80\cdot 2\\ \hline 17\cdot 6 & 4\cdot 3 & 78\cdot 1 & 27\cdot 1 & 35\cdot 7\\ \hline 18\cdot 3 & 3\cdot 8 & 77\cdot 8 & 29\cdot 6 & 16\cdot 8\\ 26\cdot 1 & 1\cdot 2 & 72\cdot 7 & 33\cdot 6 & 13\cdot 3\\ 26\cdot 5 & 1\cdot 1 & 72\cdot 3 & 34\cdot 5 & 14\cdot 2\\ \hline 27\cdot 1 & 1\cdot 3 & 71\cdot 6 & - & -\\ \hline 27\cdot 5 & 0\cdot 8 & 71\cdot 6 & 35\cdot 5 & 0\cdot 4\\ \hline \end{array}$	

Table XXII.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O . Temperature: 35° C.

	Comp_{0}	osition of sol	ution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	Na ₂ CO ₃ NaHCO ₃ H ₂ O			$ m Na_2CO_3$	NaHCO ₃	$_{\mathrm{H_2O}}$	
NaHCO ₃	$\frac{}{9\cdot 7}$	10·6 6·9	89·4 83·3	4.0	84.0	13.9	
$\begin{bmatrix} \mathrm{NaHCO_3} + \mathrm{Na_2CO_3.} \\ \mathrm{NaHCO_3.2H_2O} \end{bmatrix}$	$17 \cdot 3$	$4\cdot 7$	77.9	17.9	48.2	33.9	
${ m Na_2CO_3.NaHCO_3.2H_2O}$	$23 \cdot 7$ 28.7	2·0 0·9	74·3 70·4	36·0 34·0	20·1 12·2	43·9 53·7	
${ m Na_2CO_3.NaHCO_3.2H_2O} + { m Na_2CO_3.7H_2O}$	$32 \cdot 5$	0.6	67.0				
Na ₂ CO ₃ .7H ₂ O	$32 \cdot 8$ $32 \cdot 9$	0·3 —	$66 \cdot 9 \\ 67 \cdot 1$				

Table XXIII.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O_4 Temperature: 45° C.

	Comp	osition of sol	ution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	$oxed{ Na_2 CO_3 \ NaHCO_3 \ H_2O }$			NaHCO ₃	$\mathrm{H_2O}$	
NaHCO ₃	0·8 8·7	12·0 11·3 8·0	88·0 87·9 83·3	1.9	83.1	15.0	
${ m NaHCO_3 + Sesqui}$	16.9	5.9	$77 \cdot 2$	24.8	39.3	$35 \cdot 9$	
Sesqui	$\begin{array}{c} 21 \cdot 4 \\ 27 \cdot 3 \end{array}$	3·0 1·3	$75 \cdot 6 \\ 71 \cdot 3$	$\begin{array}{c} 38 \cdot 7 \\ 32 \cdot 6 \end{array}$	$\begin{array}{c} 25 \cdot 4 \\ 11 \cdot 7 \end{array}$	35·8 55·7	
$Sesqui + Na_2CO_3.1H_2O . . .$	$31 \cdot 7$	0.9	$67 \cdot 4$	55.6	14.9	$29 \cdot 5$	
Na ₂ CO ₃ .1H ₂ O	$32\cdot \overset{\circ}{2}$		67.8				

MR. F. A. FREETH ON THE SYSTEM: Na₂O—CO₂—NaCl—H₂O,

66

Table XXIV.—The System : Na_2CO_3 — $NaHCO_3$ — H_2O . Temperature: 60° C.

	Composition of solution. Grammes per 100 gr.			Composition of rest.			
Solid phase.				Grammes per 100 gr.			
	$ m Na_2CO_3$	NaHCO ₃	H ₂ O	Na ₂ CO ₃	NaHCO ₃	H ₂ O	
NaHCO ₃	$\frac{1\cdot 4}{8\cdot 5}$	$\begin{array}{c} - \\ 12 \cdot 9 \\ 10 \cdot 1 \end{array}$	85·7 81·5	3.4	66 · 1	30.5	
${ m NaHCO_3 + Sesqui}$	$16 \cdot 9$	7.4	75.8	22.9	29 • 2	47.9	
Sesqui	$25 \cdot 8$	$2 \cdot 4$	71.8	29.9	9.2	60.8	
Sesqui $+$ Na ₂ CO ₃ .1H ₂ O \dots	30.7	1.3	68.0	50.4	13.0	36.6	
$\mathrm{Na_2CO_3.1H_2O}$	31.8		68.2				

TABLE XXV.—The System: NaOH—NaCl—H₂O.

Temperature: 0° C.

	Comp	osition of so	lution.	Con	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.				
	NaOH	NaCl	${ m H_2O}$	NaOH	NaCl	$ m H_2O$		
NaCl	$7 \cdot 4$ $17 \cdot 2$ $29 \cdot 4$ *39 · 4	$ \begin{array}{c} 26 \cdot 3 \\ 19 \cdot 8 \\ 12 \cdot 2 \\ 4 \cdot 6 \\ 1 \cdot 5 \end{array} $	$73 \cdot 7$ $72 \cdot 8$ $70 \cdot 6$ $66 \cdot 0$ $59 \cdot 1$	$ \begin{array}{c} - \\ 0.8 \\ 2.6 \\ 5.5 \\ 10.9 \end{array} $	90·8 86·7 81·9 72·7	$ \begin{array}{c} $		
$NaCl + NaOH.4H_2O$	30.3	$4\cdot 2$	$65 \cdot 5$	34.2	$5\cdot 2$	60.6		
NaOH.4H ₂ O	29.6	Name and the second of the sec	70.4					

^{*} Supersaturated solution.

Table XXVI.—The System : $NaOH-NaCl-H_2O$.

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature : 15° C.

	Compo	osition of so	lution.	Composition of rest.			
Solid phase.	Grammes per 100 gr.			Grammes per 100 gr.			
	NaOH	NaCl	H ₂ O	NaOH	NaCl	${ m H_2O}$	
NaCl	$ \begin{array}{c} $	$26 \cdot 3$ $15 \cdot 7$ $8 \cdot 3$ $1 \cdot 7$ $0 \cdot 8$	$73 \cdot 7$ $71 \cdot 5$ $68 \cdot 6$ $58 \cdot 0$ $49 \cdot 3$	$\begin{array}{c} - \\ 1 \cdot 4 \\ 3 \cdot 3 \\ 10 \cdot 1 \\ 11 \cdot 4 \end{array}$	$ \begin{array}{c} $	$ \begin{array}{c} $	
NaOH.1H ₂ O	51.2 — 48.8						

Table XXVII.—The System : NaOH—NaCl— $\mathrm{H_2O}.$

Temperature: 20° C.

	Composition of solution. Grammes per 100 gr.			Composition of rest.			
Solid phase.				Grammes per 100 gr.			
	NaOH	NaCl	H ₂ O	NaOH	NaCl	$ m H_2O$	
NaCl	$14 \cdot 0$ $26 \cdot 1$ $35 \cdot 4$ $42 \cdot 5$	$ \begin{array}{c} 26 \cdot 4 \\ 14 \cdot 9 \\ 6 \cdot 6 \\ 2 \cdot 7 \\ 1 \cdot 3 \end{array} $	$73 \cdot 6$ $71 \cdot 1$ $67 \cdot 3$ $61 \cdot 9$ $56 \cdot 2$	$\begin{array}{c} - \\ 1 \cdot 4 \\ 4 \cdot 0 \\ 6 \cdot 4 \\ 13 \cdot 2 \end{array}$	$90.5 \\ 84.9 \\ 81.8 \\ 69.2$	$ \begin{array}{c c} & - \\ & 8 \cdot 1 \\ & 11 \cdot 1 \\ & 11 \cdot 8 \\ & 17 \cdot 6 \end{array} $	
NaOH.1H ₂ O	52.2		47.8				

Table XXVIII.—The System : NaOH—NaCl— H_2O .

Temperature: 25° C.

	Composition of solution. Grammes per 100 gr.			Composition of rest.			
Solid Phase.				Grammes per 100 gr.			
	NaOH	NaCl	H ₂ O	NaOH	NaCl	$ m H_2O$	
NaCl	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$26 \cdot 4 \\ 14 \cdot 7 \\ 6 \cdot 5 \\ 1 \cdot 7$	$73 \cdot 6$ $71 \cdot 1$ $66 \cdot 9$ $57 \cdot 7$	$-2 \cdot 1 \ 4 \cdot 6 \ 7 \cdot 5$	$ \begin{array}{c} $	$ \begin{array}{c} $	
NaOH.1H ₂ O	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.7	80.4	9.9	

Table XXIX.—The System : NaOH—NaCl— H_2O .

Temperature: 30° C.

	Composition of solution. Grammes per 100 gr.			Con	Composition of rest.			
Solid Phase.				Grammes per 100 gr.				
	NaOH	NaCl	$ m H_2O$	NaOH	NaCl	$\rm H_2O$		
NaCl	$ \begin{array}{c} -14 \cdot 4 \\ 26 \cdot 9 \\ 39 \cdot 2 \\ 48 \cdot 0 \end{array} $	$26 \cdot 5$ $14 \cdot 7$ $6 \cdot 4$ $2 \cdot 0$ $1 \cdot 1$	73·5 70·9 66·7 58·8 50·9	$\begin{array}{c} -1 \cdot 6 \\ 4 \cdot 6 \\ 6 \cdot 3 \\ 11 \cdot 6 \end{array}$	90·8 84·1 83·5 76·0	$7 \cdot 6$ $11 \cdot 3$ $10 \cdot 2$ $12 \cdot 4$		
NaOH.1H ₂ O	54.3		45.7	-				

TABLE XXX.—The System: NaOH—NaCl—H₂O.

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 35° C.

	Composition of solution. Grammes per 100 gr.			Composition of rest. Grammes per 100 gr.		
Solid phase.						
	NaOH	NaCl	${ m H_2O}$	NaOH	NaCl	$\mathrm{H_2O}$
NaCl	$-\frac{14 \cdot 6}{28 \cdot 4}$ $41 \cdot 9$ $51 \cdot 2$	$26 \cdot 6$ $14 \cdot 6$ $5 \cdot 8$ $1 \cdot 7$ $1 \cdot 1$	$73 \cdot 4$ $70 \cdot 8$ $65 \cdot 8$ $56 \cdot 4$ $47 \cdot 7$	$\begin{array}{c} -1 \cdot 4 \\ 6 \cdot 7 \\ 6 \cdot 5 \\ 14 \cdot 7 \end{array}$	91.8 77.9 84.4 71.5	$\begin{array}{c} - \\ 6 \cdot 8 \\ 15 \cdot 4 \\ 9 \cdot 1 \\ 13 \cdot 8 \end{array}$
NaOH.1H ₂ O	$55 \cdot 4$		44.6			

TABLE XXXI.—The System: NaOH—NaCl—H₂O.

Temperature: 45° C.

	Composition of solution. Grammes per 100 gr.			Composition of rest. Grammes per 100 gr.		
Solid phase.						
	NaOH	NaCl	H ₂ O	NaOH	NaCl	H ₂ O
NaCl	$ \begin{array}{c} -14 \cdot 0 \\ 28 \cdot 7 \\ 41 \cdot 6 \end{array} $	$26 \cdot 7$ $15 \cdot 2$ $5 \cdot 9$ $2 \cdot 0$	$73 \cdot 3$ $70 \cdot 8$ $65 \cdot 4$ $56 \cdot 4$	$\begin{array}{c} - \\ 1 \cdot 3 \\ 4 \cdot 0 \\ 5 \cdot 0 \end{array}$	$92 \cdot 0$ $87 \cdot 4$ $88 \cdot 0$	6·7 8·6 7·0
NaOH.1H ₂ O	53·9 57·8	1.3	$44 \cdot 8$ $42 \cdot 2$	9.5	82.6	7.9

TABLE XXXII.—The System: NaOH—NaCl—H₂O.

Temperature: 60° C.

	Comp	osition of so	olution.	Con	Composition of rest.				
Solid phase.	Grai	nmes per 10	00 gr.	Grammes per 100 gr.					
	NaOH	NaCl	H ₂ O	NaOH	NaCl	H ₂ O			
NaCl	15.8	$\begin{array}{c} 27 \cdot 0 \\ 14 \cdot 2 \end{array}$	73·0 70·0	1.4	92.5	6.1			
	$28 \cdot 3$ $41 \cdot 3$ $52 \cdot 5$	$\begin{array}{c} 6 \cdot 6 \\ 2 \cdot 5 \\ 1 \cdot 7 \end{array}$	$65 \cdot 1 \\ 56 \cdot 2 \\ 45 \cdot 8$	$3 \cdot 5$ $6 \cdot 6$ $10 \cdot 6$	$88 \cdot 3 \\ 84 \cdot 2 \\ 79 \cdot 7$	$8 \cdot 2$ $9 \cdot 2$ $9 \cdot 7$			
NaOH.1H ₂ O	63.5	<u> </u>	36.5			***************************************			

Table XXXIII.—The System : NaHCO₃—NaCl— $\mathrm{H_2O}$.

Temperature: 0° C.

	Compo	osition of so	lution.	Composition of rest.			
Solid phase.	Gran	nmes per 10	00 gr.	. Grammes per 100 gr.			
	${ m NaHCO_3}$	NaCl	$\mathrm{H_2O}$	NaHCO ₃	NaCl	$\rm H_2O$	
NaHCO ₃	$6 \cdot 5$ $2 \cdot 7$ $1 \cdot 1$	8·8 19·8	$93.5 \\ 88.5 \\ 79.1$	$ \begin{array}{c} -\\ 92 \cdot 2\\ 87 \cdot 3 \end{array} $	$\begin{array}{c} -1 \cdot 1 \\ 2 \cdot 6 \end{array}$	$\begin{array}{c c} - & \\ \hline 6 \cdot 7 \\ 10 \cdot 1 \end{array}$	
$ ext{NaHCO}_3 + ext{NaCl}$	0.6	$25 \cdot 9$	73.5	29.9	$59 \cdot 7$	10.4	
NaCl		26.3	73.7		Bankanya		

Table XXXIV.—The System : NaHCO₃—NaCl—H₂O.

Temperature: 15° C.

	Compo	sition of so	lution.	Composition of rest. Grammes per 100 gr.			
Solid phase.	Gran	nmes per 10	00 gr.				
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	H ₂ O	
NaHCO ₃	8.1	8·6 16·4	$ 91 \cdot 9 \\ 87 \cdot 6 \\ 81 \cdot 6 $	$ \begin{array}{c c} & - \\ & 86 \cdot 7 \\ & 82 \cdot 6 \end{array} $	$1 \cdot 2$ $2 \cdot 9$	$\begin{array}{c c} & - & \\ & 12 \cdot 1 \\ & 14 \cdot 5 & \end{array}$	
${ m NaHCO_3 + NaCl}$	$2 \cdot 0$ $0 \cdot 9$	26.1	73.0	52.1	36.2	11.7	
NaCl		$26 \cdot 3$	73.7		.—		

Table XXXV.—The System : NaHCO₃—NaCl—H₂O.

Temperature: 20° C.

	Compo	sition of sol	ution.	Composition of rest.				
Solid phase.	Gran	nmes per 10	0 gr.	Grammes per 100 gr.				
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	H ₂ O		
NaHCO ₃	$8 \cdot 7$ $4 \cdot 2$ $1 \cdot 7$	$-8.5 \\ 19.5$	$91 \cdot 3 \\ 87 \cdot 3 \\ 78 \cdot 8$	88.4	0.8	10.8		
NaHCO ₃ + NaCl	1.0	$26 \cdot 1$	$72 \cdot 9$	53.9	$36 \cdot 3$	9.8		
NaCl	-	$26 \cdot 4$	73.6					

Table XXXVI.—The System : $NaHCO_3$ —NaCl— H_2O .

Temperature: 25° C.

	Compo	osition of so	lution.	Composition of rest.			
Solid phase.	Grai	nmes per 10	00 gr.	Grammes per 100 gr.			
	NaHCO ₃	NaCl	$ m H_2O$	NaHCO ₃	NaCl	H ₂ O	
NaHCO ₃	$9 \cdot 3$ $3 \cdot 2$ $1 \cdot 8$	$\frac{12 \cdot 7}{19 \cdot 7}$	90.7 84.1 78.5	85·0 88·4	$2 \cdot 0$ $2 \cdot 2$	13·0 9·4	
$NaHCO_3 + NaCl$	$1\cdot 2$	$26 \cdot 0$	$72 \cdot 8$	57.3	$35\cdot 2$	$7 \cdot 5$	
NaCl		$26 \cdot 4$	73.6				

TABLE XXXVII.—The System: NaHCO₃—NaCl—H₂O.

Temperature: 30° C.

	Compo	osition of so	lution.	Com	Composition of rest.			
Solid phase.	Gran	nmes per 10	00 gr.	Grammes per 100 gr.				
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	${ m H_2O}$		
NaHCO ₃	$9 \cdot 9$ $4 \cdot 9$ $1 \cdot 9$	8·8 19·5	$90 \cdot 1 \\ 86 \cdot 3 \\ 78 \cdot 6$	89·9 88·0	$0 \cdot 9$ $2 \cdot 4$	9·2 9·6		
NaHCO ₃ + NaCl	1.2	$26 \cdot 1$	$72 \cdot 7$	53.5	$39 \cdot 5$	7.0		
NaCl	-	26.5	73.5					

Table XXXVIII.—The System : NaHCO3—NaCl—H2O.

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 35° C.

	Compo	osition of sol	ution.	Composition of rest.			
Solid phase.	Gran	nmes per 10	0 gr.	Grammes per 100 gr.			
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	$ m H_2O$	
NaHCO ₃	$ \begin{array}{c c} 10 \cdot 6 \\ 4 \cdot 7 \\ 2 \cdot 1 \end{array} $	10·3 19·6	$89 \cdot 4 \\ 85 \cdot 0 \\ 78 \cdot 3$	91·9 72·5	1·0 5·5	$\begin{array}{c} - \\ 7 \cdot 1 \\ 22 \cdot 0 \end{array}$	
$NaHCO_3 + NaCl \dots$	1.3	26 · 2	72.5	53.1	$42 \cdot 2$	4.7	
NaCl	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table XXXIX.—The System : NaHCO3—NaCl—H2O.

Temperature: 45° C.

	Compo	osition of so	lution.	Composition of rest.			
Solid phase.	Gran	nmes per 10	0 gr.	Grammes per 100 gr.			
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	$ m H_2O$	
NaHCO ₃	5.8	10.5	88·0 83·7	89.5	$\frac{-}{1 \cdot 2}$	9.3	
NaHCO ₃ + NaCl	$2 \cdot 7$ $1 \cdot 5$	$19 \cdot 2$ $26 \cdot 2$	$78 \cdot 1$ $72 \cdot 3$	58.1	34.1	7.5	
NaCl		26.7	73.3				

Table XL.—The System : $NaHCO_3$ —NaCl— H_2O . Temperature: 60° C.

	Comp	osition of so	olution.	Composition of rest. Grammes per 100 gr.			
Solid phase.	Gran	mmes per 10	00 gr.				
	NaHCO ₃	NaCl	H ₂ O	NaHCO ₃	NaCl	H ₂ O	
NaHCO ₃	$14 \cdot 1$ $7 \cdot 4$ $3 \cdot 7$	10·0 19·1	$85 \cdot 9 \\ 82 \cdot 6 \\ 77 \cdot 2$	66·8 68·6	$3 \cdot 6$ $6 \cdot 3$	$\begin{array}{c} -29\cdot 6 \\ 25\cdot 1 \end{array}$	
${ m NaHCO_3 + NaCl}$	$2 \cdot 2$	$26 \cdot 4$	$71 \cdot 4$	52.0	28.1	19.9	
NaCl	:	27.0	73.0		gantauran		

Table XLI.—The System : Na_2CO_3 —NaOH—NaCl— H_2O . Temperature : 0° C.

	Co	ompositio	n of solut	ion.	Composition of rest.				
Solid phase.	(Grammes	per 100 g	gr.	Grammes per 100 gr.				
	$\mathrm{Na_2CO_3}$	NaOH	NaCl	H ₂ O	Na ₂ CO ₃	NaOH	NaCl	H ₂ O	
${ m Na_2CO_3.10H_2O+NaCl}$.	$2 \cdot 4$ $2 \cdot 4$	$8 \cdot 4$ $14 \cdot 3$	$\begin{array}{c c} 17 \cdot 3 \\ 12 \cdot 7 \end{array}$	$\begin{array}{c} 71 \cdot 9 \\ 70 \cdot 6 \end{array}$	$\begin{array}{c} 25 \cdot 1 \\ 21 \cdot 9 \end{array}$	$1 \cdot 2$ $3 \cdot 0$	$\begin{array}{ c c c }\hline 20.4 \\ 25.1 \\ \hline \end{array}$	$\begin{array}{c c} 53 \cdot 3 \\ 50 \cdot 0 \end{array}$	
$\begin{array}{c} {\rm Na_{2}CO_{3}.10H_{2}O} + \\ {\rm Na_{2}CO_{3}.7H_{2}O} + {\rm NaCl} \end{array}$	2.8	16.0	11.2	70.0	21.4	$4 \cdot 5$	25.7	48.4	
$\begin{array}{c} \mathrm{Na_{2}CO_{3}.10H_{2}O} + \\ \mathrm{Na_{2}CO_{3}.7H_{2}O} \end{array}$	2.9	20.5	4.2	72.4	31.8	3.4	0.7	64.1	
$egin{array}{l} \mathrm{Na_2CO_3.7H_2O} + \\ \mathrm{Na_2CO_3.1H_2O} + \mathrm{NaCl} \end{array}$	$2 \cdot 9$	19.9	8.5	68.7	25.7	5.9	$36 \cdot 4$	32.0	
$\begin{array}{c} {\rm Na_{2}CO_{3}.7H_{2}O} + \\ {\rm Na_{2}CO_{3}.1H_{2}O} \end{array}$	3.4	22 · 1	* 4.2	70.3	35.6	6.6	1.2	56.6	
${ m Na_2CO_3.1H_2O+NaCl}$	$ \begin{array}{c c} 2 \cdot 2 \\ 1 \cdot 9 \\ 1 \cdot 2 \\ 0 \cdot 6 \end{array} $	$23 \cdot 1$ $24 \cdot 0$ $25 \cdot 8$ $29 \cdot 2$	$6 \cdot 9 \\ 6 \cdot 5 \\ 5 \cdot 6 \\ 4 \cdot 3$	$67 \cdot 8$ $67 \cdot 6$ $67 \cdot 4$ $65 \cdot 9$	$ \begin{array}{c c} 40 \cdot 0 \\ 25 \cdot 3 \\ 57 \cdot 1 \\ 39 \cdot 3 \end{array} $	$ \begin{array}{c} 7 \cdot 6 \\ 9 \cdot 3 \\ 4 \cdot 0 \\ 9 \cdot 5 \end{array} $	$20 \cdot 9$ $34 \cdot 6$ $16 \cdot 5$ $20 \cdot 9$	$31.5 \\ 30.8 \\ 22.4 \\ 30.3$	

Table XLII.—The System : Na_2CO_3 —NaOH—NaCl— H_2O .

Temperature: 15° C.

	Со	mposition	of soluti	on.		Composition of rest.					
Solid phase.	.(Grammes	per 100 g	r.	(Grammes per 100 gr.					
· ·	Na ₂ CO ₃	NaOH	NaCl	H ₂ O	Na ₂ CO ₃	NaOH	NaCl	$ m H_2O$			
${ m Na_2CO_3.10Aq+NaCl}$	$9 \cdot 2$ $8 \cdot 4$	1·5 5·8	$\begin{array}{c} 19\cdot 4 \\ 16\cdot 2 \end{array}$	69·9 69·6	26.9	0.1	22.3	50.7			
$\begin{array}{c} \mathrm{Na_2CO_3.10Aq} + \\ \mathrm{Na_2CO_3.7Aq} + \mathrm{NaCl} \end{array}$	8.7	$7 \cdot 2$	14.9	69 · 2	$35 \cdot 2$	0.1	$16 \cdot 2$	48.5			
$\begin{smallmatrix} \mathrm{Na_2CO_3.10Aq} + \\ \mathrm{Na_2CO_3.7Aq} \end{smallmatrix}$	7·9 8·7	$10 \cdot 4$ $15 \cdot 6$	10·5 2·6	$\begin{array}{c c} 71 \cdot 2 \\ 73 \cdot 1 \end{array}$	$\begin{array}{c c} 36\cdot 1 \\ 41\cdot 0 \end{array}$	$1 \cdot 8$ $1 \cdot 4$	$2 \cdot 2$ $0 \cdot 3$	59·9 57·3			
${ m Na_2CO_3.7Aq+NaCl}$	7.5	10.6	12.7	69.2	31.6	0.8	20.8	46.8			
$\begin{array}{c} \mathrm{Na_2CO_3.7Aq} + \\ \mathrm{Na_2CO_3.1Aq} + \mathrm{NaCl} \end{array}$	7 · 2	12.5	11.7	68.6	41.4	$2 \cdot 5$	19.3	36.8			
$^{\mathrm{Na_2CO_3.7Aq}}_{\mathrm{Na_2CO_3.1Aq}}$	$\begin{array}{c} 8 \cdot 2 \\ 7 \cdot 9 \end{array}$	$13 \cdot 6$ $17 \cdot 7$	$9 \cdot 6 \\ 3 \cdot 1$	$\begin{array}{c} 68 \cdot 6 \\ 71 \cdot 3 \end{array}$	$35 \cdot 2$ $64 \cdot 3$	$5 \cdot 9$ $4 \cdot 3$	$2 \cdot 9 \\ 0 \cdot 9$	56·0 30·5			
${ m Na_2CO_3.1Aq+NaCl}$	$\begin{array}{c} 1 \cdot 9 \\ 0 \cdot 2 \end{array}$	$23 \cdot 1 \\ 46 \cdot 2$	7·4 0·9	$\begin{array}{c} 67 \cdot 6 \\ 52 \cdot 7 \end{array}$	$\begin{array}{c c} 37 \cdot 3 \\ 27 \cdot 5 \end{array}$	$9 \cdot 7$ $14 \cdot 3$	$\begin{array}{c} 19 \cdot 6 \\ 36 \cdot 6 \end{array}$	$\begin{array}{c c} 33 \cdot 4 \\ 21 \cdot 6 \end{array}$			

Table XLIII.—The System : Na_2CO_3 —NaOH—NaCl— H_2O .

Temperature: 20° C.

	Co	mpositio	n of solut	ion.		Composition of rest.				
Solid phase.	(Frammes	per 100 g	r.	(Grammes	per 100 g	ŗ.		
	Na ₂ CO ₃	NaOH	NaCl	H ₂ O	Na_2CO_3	NaOH	NaCl	H ₂ O		
$rac{{ m Na_2CO_3.10H_2O}}{{ m Na_2CO_3.7H_2O} + { m NaCl}}$	12.8	1.7	16.9	68.6	37.3	0.1	12.8	49.8		
$\begin{array}{c} {\rm Na_2CO_3.10H_2O} + \\ {\rm Na_2CO_3.7H_2O} \end{array}$	11·6 11·8	$9.5 \\ 12.8$	$\begin{array}{c} 6 \cdot 9 \\ 1 \cdot 5 \end{array}$	$72.0 \\ 73.9$	$\begin{array}{c} 33 \cdot 2 \\ 39 \cdot 3 \end{array}$	$\begin{array}{c} \cdot & 3 \cdot 6 \\ 0 \cdot 5 \end{array}$	$2 \cdot 5$ $0 \cdot 3$	60·7 59·9		
${ m Na_2CO_3.7H_2O+NaCl}$.	12·0 9·6	$3 \cdot 6 \\ 8 \cdot 5$	$15 \cdot 9$ $13 \cdot 4$	$\begin{array}{c c} 68.5 \\ 68.5 \end{array}$	31·8 28·7	$1 \cdot 2 \\ 2 \cdot 5$	$14 \cdot 0 \\ 19 \cdot 5$	$\begin{bmatrix} 53 \cdot 0 \\ 49 \cdot 3 \end{bmatrix}$		
$\begin{array}{c} \mathrm{Na_2CO_3.7H_2O} + \\ \mathrm{Na_2CO_3.1H_2O} + \mathrm{NaCl} \end{array}$	9.6	9.7	$12 \cdot 4$	68.3	28.4	1.3	44.1	$26 \cdot 2$		
${\rm Na_{2}CO_{3}.7H_{2}O} + {\rm Na_{2}CO_{3}.1H_{2}O}$	10·1 10·6	$\begin{array}{c c} 12\cdot 4 \\ 15\cdot 5 \end{array}$	$7 \cdot 5$ $1 \cdot 9$	$70 \cdot 0 \\ 72 \cdot 0$	40·0 39·5	$4 \cdot 6 \\ 5 \cdot 7$	$\begin{bmatrix} 2\cdot 4 \\ 0\cdot 6 \end{bmatrix}$	$53 \cdot 0$ $54 \cdot 2$		
${ m Na_2CO_3.1H_2O+NaCl}$.	$\begin{bmatrix} 7 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 7 \end{bmatrix}$	$ \begin{array}{c c} 12 \cdot 3 \\ 25 \cdot 1 \\ 46 \cdot 7 \end{array} $	$\begin{array}{c} 11 \cdot 9 \\ 6 \cdot 6 \\ 0 \cdot 9 \end{array}$	$68.8 \\ 67.1 \\ 50.7$	$\begin{bmatrix} -39 \cdot 3 \\ 20 \cdot 2 \end{bmatrix}$	$\begin{bmatrix} -8.8 \\ 29.2 \end{bmatrix}$	$\begin{bmatrix} 20 \cdot 7 \\ 14 \cdot 3 \end{bmatrix}$	$31 \cdot 2$ $36 \cdot 3$		

Table XLIV.—The System : Na_2CO_3 —NaOH—NaCl— H_2O .

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 25° C.

	Co	mposition	of soluti	on.	Composition of rest.					
Solid phase.	(drammes	per 100 g	r.	(Grammes	per 100 g	H_2O $60 \cdot 6$ $64 \cdot 7$ $55 \cdot 0$ $50 \cdot 9$ $60 \cdot 7$ $35 \cdot 9$		
3	Na ₂ CO ₃	NaOH	NaCl	${ m H_2O}$	Na ₂ CO ₃	NaOH	NaCl	H ₂ O		
Na ₂ CO ₃ .10H ₂ O +			Continues and the second continues and the second							
$ m Na_2CO_3.7H_2O$	$18 \cdot 1$ $18 \cdot 3$	$1 \cdot 7$ $6 \cdot 3$	$8 \cdot 6$ $3 \cdot 3$	$71 \cdot 6 \\ 72 \cdot 1$	$\begin{array}{ c c c }\hline 37\cdot 1\\ 33\cdot 4\end{array}$	$0 \cdot 3$ $1 \cdot 2$	$\begin{array}{c} 2\cdot 0 \\ 0\cdot 7 \end{array}$	1		
$Na_2CO_3.7H_2O + NaCl$	15.9	1.7	15.0	67.4	33.7	0.3	11.0	55.0		
$^{{\rm Na_2CO_3.7H_2O}}_{{\rm Na_2CO_3.1H_2O}}$	$\begin{array}{c} 14 \cdot 9 \\ 15 \cdot 2 \end{array}$	$\begin{array}{c} 8 \cdot 6 \\ 11 \cdot 0 \end{array}$	$6 \cdot 4$ $3 \cdot 2$	70·1 70·6	42·2 33·5	$3 \cdot 9$ $4 \cdot 5$	$\frac{3\cdot 0}{1\cdot 4}$			
$\begin{array}{c} {\rm Na_2CO_3.7H_2O} + \\ {\rm Na_2CO_3.1H_2O} + {\rm NaCl} \end{array}$	13.5	4.4	14.1	68.0	50.8	1.8	11.5	35.9		
${ m Na_2CO_3.1H_2O+NaCl}$	$ \begin{array}{c c} 9 \cdot 1 \\ 3 \cdot 1 \\ 0 \cdot 3 \\ 0 \cdot 3 \end{array} $	$ \begin{array}{c c} 8 \cdot 9 \\ 18 \cdot 5 \\ 41 \cdot 5 \\ 44 \cdot 0 \end{array} $	$ \begin{array}{c c} 13.5 \\ 9.9 \\ 1.5 \\ 1.3 \end{array} $	68·5 68·5 56·7 54·4	58.5 47.0 31.8 32.2	$2 \cdot 3$ $5 \cdot 0$ $16 \cdot 3$ $15 \cdot 9$	$12 \cdot 0$ $17 \cdot 2$ $24 \cdot 3$ $26 \cdot 5$	$ \begin{array}{c c} 27 \cdot 2 \\ 29 \cdot 9 \\ 27 \cdot 6 \\ 25 \cdot 4 \end{array} $		
$\begin{array}{c} \mathrm{Na_2CO_3.1H_2O} + \\ \mathrm{Na_2CO_3} + \mathrm{NaCl} \end{array}$	0.5	45.7	1.1	52.7	28.6	19•4	$25 \cdot 3$	26.7		
Na ₂ CO ₃ + NaCl	0.2	49.9	1.0	48.9	15.2	$31 \cdot 1$	21.8	31.9		

TABLE XLV.—The System: Na₂CO₃—NaOH—NaCl—H₂O. Temperature: 30° C.

, , , , , , , , , , , , , , , , , , ,	Co	ompositio	n of solut	ion.	Composition of rest.				
Solid phase.	Manufacture and artistations of the second	Grammes	per 100 g	gr.	Transmission partners of the control	Grammes	per 100 g	ŗ.	
	$ m Na_2CO_3$	NaOH	NaCl	H ₂ O	Na ₂ CO ₃	NaOH	NaCl	H ₂ O	
${ m Na_2CO_3.10H_2O} + { m Na_2CO_3.7H_2O}$	26.7	2.2	1.2	69.9	39.3	0.6	0 · 4	59.7	
$ m Na_2CO_3.7H_2O + Na_2CO_3.1H_2O$	$23 \cdot 1$ $22 \cdot 4$	$1 \cdot 5 \\ 5 \cdot 2$	$7 \cdot 6$ $2 \cdot 9$	67·8 69·5	53·2 59·0	0·4 0·8	1·8 0·8	44·6 39·4	
${ m Na_2CO_3.1H_2O+NaCl}$	$\begin{bmatrix} 6 \cdot 0 \\ 0 \cdot 2 \end{bmatrix}$	$\begin{array}{c} 12 \cdot 4 \\ 34 \cdot 6 \end{array}$	$\begin{array}{c} 12 \cdot 5 \\ 3 \cdot 0 \end{array}$	$\begin{array}{c} 69\cdot 1 \\ 62\cdot 2 \end{array}$	$\begin{bmatrix} 36 \cdot 1 \\ 27 \cdot 7 \end{bmatrix}$	3·5 10·1	$\begin{array}{c} 35 \cdot 7 \\ 37 \cdot 6 \end{array}$	$24 \cdot 7$ $24 \cdot 6$	
$egin{array}{l} \mathrm{Na_2CO_3.1H_2O} + \\ \mathrm{Na_2CO_3} + \mathrm{NaCl} \end{array}$	0.2	41.8	1.5	56.5	23.6	20.6	27.0	28 · 8	
${ m Na_2CO_3 + NaCl}$	0.2	51.3	1.0	47.5	11.1	26.7	37 · 2	25.0	

Table XLVI.—The System : Na_2CO_3 —NaOH—NaCl— H_2C . Temperature : 35° C.

	Co	omposition	of soluti	on.	Composition of rest.				
Solid phase.	(Grammes	per 100 g	r.	All results from the results of the	Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaOH.	NaCl	H ₂ O	$ m Na_2CO_3$	NaOH	NaCl	H ₂ O	
$ m Na_2CO_3.1H_2O+NaCl$	11·0 4·6 1·4	5·4 14·7 24·9	$15 \cdot 3$ $11 \cdot 8$ $7 \cdot 0$	68·3 68·9 66·7	56·6 48·9 42·1	1·7 4·4	$ \begin{array}{c c} 24 \cdot 7 \\ 30 \cdot 0 \\ 34 \cdot 0 \end{array} $	18·7 19·4 19·5	
$\begin{array}{c} \mathrm{Na_2CO_3.1H_2O} + \\ \mathrm{Na_2CO_3} + \mathrm{NaCl} \end{array}$	0.3	40.8	1.8	57:1	42.4	$14 \cdot 6$	19.6	23.4	
${ m Na_2CO_3 + NaCl}$	1.0	49.0	1.2	48.8	13.5	$37 \cdot 2$	12.2	37 · 1	

Table XLVII.—The System : Na_2CO_3 —NaOH—NaCl— H_2O .

Temperature: 45° C.

	Со	mposition	of soluti	on.	Composition of rest.				
Solid phase.	(Grammes	per 100 g	ſ.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			r.	
	$\mathrm{Na_2CO_3}$	NaOH	NaCl	${ m H_2O}$	$\mathrm{Na_2CO_3}$	NaOH	NaCl	H ₂ O	
$ m Na_2CO_3.1H_2O + NaCl$	$9 \cdot 2 \\ 2 \cdot 9 \\ 0 \cdot 4$	$6 \cdot 1 \\ 18 \cdot 1 \\ 33 \cdot 4$	16·0 10·8 3·8	$68 \cdot 7$ $68 \cdot 2$ $62 \cdot 4$	50.1	$4 \cdot 4$	$17 \cdot 8$	$27 \cdot 7$	
$\begin{array}{c} \mathrm{Na_{2}CO_{3}.1H_{2}O} + \\ \mathrm{Na_{2}CO_{3}} + \mathrm{NaCl} \end{array}$	0.3	$37 \cdot 2$	$2 \cdot 7$	59· 8	32.8	16.8	$22 \cdot 1$	28.3	
${ m Na_2CO_3 + NaCl}$	$0.3 \\ 0.2 \\ 0.5$	$38 \cdot 8$ $40 \cdot 9$ $54 \cdot 1$	$2 \cdot 4 \\ 2 \cdot 1 \\ 1 \cdot 3$	$58.5 \\ 56.8 \\ 44.1$	$ \begin{vmatrix} 17.8 \\ 30.6 \\ 21.4 \end{vmatrix} $	$19 \cdot 6$ $20 \cdot 4$ $28 \cdot 4$	$33 \cdot 3$ $20 \cdot 3$ $26 \cdot 6$	$ \begin{array}{r} 29 \cdot 3 \\ 28 \cdot 7 \\ 23 \cdot 6 \end{array} $	

Table XLVIII.—The System: Na_2CO_3 —NaOH—NaCl— H_2O_3

Temperature: 60° C.

	Co	mposition	of soluti	on.	Composition of rest.							
Solid phase.	Grammes per 100 gr.				(Grammes	per 100 g) gr. 1 H ₂ O 25.6 27.9				
	$\mathrm{Na_2CO_3}$	NaOH	NaCl	H ₂ O	Na ₂ CO ₃	NaOH	NaCl	H ₂ O				
${ m Na_2CO_3.1H_2O+NaCl}$	5·8 2·6 1·7	$9 \cdot 4 \\ 18 \cdot 1 \\ 22 \cdot 3$	15·8 11·3 8·4	69·0 68·0 67·6	34·9 35·5 37·1	$3.0 \\ 5.5 \\ 6.7$	$ \begin{array}{r} 36 \cdot 5 \\ 31 \cdot 1 \\ 30 \cdot 0 \end{array} $					
$egin{array}{c} \mathrm{Na_2CO_3.1H_2O} + \\ \mathrm{Na_2CO_3} + \mathrm{NaCl} \end{array}$	0.5	33.2	4.3	62.0	38.8	12.5	21.5	27 · 2				
$\mathrm{Na_2CO_3} + \mathrm{NaCl}$	0.2	$52 \cdot 6$	1.7	45.5	18.3	27.6	30.0	$24 \cdot 1$				

Table XLIX.—The System : Na_2CO_3 — $NaHCO_3$ —NaCl— H_2O .

Temperature: 0° C.

	C	omposition	of soluti	on.	Composition of rest.					
Solid phase.		Grammes _J	per 100 g	r.		Grammes per 100 gr.				
	Na ₂ CO ₃	NaHCO ₃	NaCl	H ₂ O	Na ₂ CO ₃	NaHCO ₃	NaCl	H ₂ O		
$ m Na_2CO_3.10H_2O + NaHCO_3$	3.78 2.89 2.39	3.51 2.83 2.14	4·81 9·53 15·14	87·90 84·75 80·33	24.85 25.35 20.99	$ \begin{array}{c c} 24 \cdot 68 \\ 22 \cdot 65 \\ 29 \cdot 87 \end{array} $	$0.35 \\ 0.82 \\ 1.76$	50·12 51·18 47·38		
$egin{array}{l} { m Na}_2{ m CO}_3.10{ m H}_2{ m O} + \ { m Na}_4{ m HCO}_3 + { m Sesqui} \end{array}$	$2 \cdot 63$ $2 \cdot 77$	0.92 1.11	$21 \cdot 32$ $22 \cdot 84$	75.13 73.28	$23 \cdot 09$ $34 \cdot 54$	$25 \cdot 94$ $8 \cdot 79$	$2 \cdot 66$ $2 \cdot 48$	48·31 54·19		
$egin{aligned} ext{Na}_2 ext{CO}_3.10 ext{H}_2 ext{O} + \\ ext{Sesqui} + ext{NaCl} \end{aligned}$	2.99	0.73	23.86	$72 \cdot 42$	28.92	$7 \cdot 33$	17.68	46.07		
${ m NaHCO_3 + Sesqui + NaCl}$	$2 \cdot 72$ $2 \cdot 77$	$\begin{array}{c} 0.96 \\ 0.92 \end{array}$	23·88 23·86	$72 \cdot 44 $ $72 \cdot 45$	$\begin{bmatrix} 5 \cdot 47 \\ 27 \cdot 96 \end{bmatrix}$	$54 \cdot 24 \\ 24 \cdot 83$	$\begin{array}{c c} 21 \cdot 70 \\ 17 \cdot 10 \end{array}$	$\frac{18 \cdot 59}{30 \cdot 11}$		
${ m NaHCO_3 + NaCl}$	1.30	0.73	25.05	72.92	1.34	50.58	24 · 29	23.79		

Table L.—The System: Na₂CO₃—NaHCO₃—NaCl—H₂O.

Temperature: 15° C.

	Co	omposition	of soluti	on.		Compositio	on of rest	
Solid phase.		Grammes 1	oer 100 g	P		Grammes 1	per 100 g	
	$ m Na_2CO_3$	NaHCO ₃	NaCl	$\mathrm{H_2O}$	Na ₂ CO ₃	NaHCO ₃	NaCl	${ m H_2O}$
Na ₂ CO ₃ .10H ₂ O + NaHCO ₃	$\begin{array}{c c} 11 \cdot 42 \\ 9 \cdot 62 \end{array}$	$4.05 \ 2.33$	3.06 7.71	81·47 80·34	24·56 3·28	$\begin{array}{c c} 20 \cdot 74 \\ 76 \cdot 06 \end{array}$	$0.62 \\ 1.65$	54·08 19·01
$\begin{array}{c} \mathrm{Na_{2}CO_{3}.10H_{2}O} + \\ \mathrm{NaHCO_{3}} + \\ \mathrm{Na_{2}CO_{3}.NaHCO_{3}.2H_{2}O} \end{array}$	$9.74 \\ 9.33$	$1 \cdot 41$ $2 \cdot 06$	11·19 11·58	$77 \cdot 66$ $77 \cdot 03$	$29 \cdot 93$ $26 \cdot 82$	$29.76 \\ 23.95$	$3 \cdot 09$ $1 \cdot 68$	$37 \cdot 22 \\ 47 \cdot 55$
$\begin{array}{c} \mathrm{NaHCO_3} + \\ \mathrm{Na_2CO_3.NaHCO_3.2H_2O} \end{array}$	4.80	1.91	18.52	$74 \cdot 77$	7.98	60.28	5.77	$25 \cdot 97$
$\begin{array}{c} \mathrm{Na_2CO_3.10H_2O} + \\ \mathrm{Na_2CO_3.NaHCO_3.2H_2O} \end{array}$	8.48	1.38	$15 \cdot 24$	74.90	$32 \cdot 29$	5.39	$3 \cdot 34$	58.98
$\begin{array}{c} \mathrm{Na_2CO_3.10H_2O} + \\ \mathrm{Na_2CO_3.NaHCO_3.2H_2O} + \\ \mathrm{NaCl} \end{array}$	9.11	0.19	20.49	70.21	25.88	15.81	33.48	24.83
$\substack{\text{Na}_2\text{CO}_3.\text{NaHCO}_3.2\text{H}_2\text{O} + \\ \text{NaC1}}$	6·41 4·70	0·08 0·31	$\begin{array}{c c} 22 \cdot 18 \\ 23 \cdot 22 \end{array}$	$71 \cdot 33$ $71 \cdot 77$	$\begin{array}{c} 27 \cdot 57 \\ 24 \cdot 80 \end{array}$	19·37 16·96	$\begin{array}{c} 32\cdot 45 \\ 36\cdot 39 \end{array}$	20·61 21·85
$\begin{array}{c} \mathrm{Na_{2}CO_{5}.NaHCO_{3}.2H_{2}O} + \\ \mathrm{NaHCO_{3}} + \mathrm{NaC1} \end{array}$	$3 \cdot 25$	0.61	23.93	$72 \cdot 21$	$12 \cdot 27$	45.04	27.72	14.97

Table LI.—The System : Na_2CO_3 — $NaHCO_3$ —NaCl— H_2O .

Temperature : 20° C.

	C	omposition	of soluti	on.	Composition of rest.				
Solid phase.		Grammes	per 100 g	r.	(Grammes p	oer 100 g	7	
	Na ₂ CO ₃	NaHCO ₃	NaCl	${ m H_2O}$	$ m Na_2CO_3$	NaHCO ₃	NaCl	H ₂ O	
$\begin{array}{c} \rm Na_2CO_3.10H_2O + \\ \rm NaHCO_3 + Sesqui \end{array}$	16.17	3.40	$2 \cdot 22$	78 • 21	27.55	19.33	0.58	52.54	
${ m Na_2CO_3.10H_2O+Sesqui}$.	13·40 12·58	$\begin{bmatrix} 2 \cdot 60 \\ 1 \cdot 07 \end{bmatrix}$	$7 \cdot 90 \\ 13 \cdot 97$	$76 \cdot 10 \\ 72 \cdot 38$	$34 \cdot 22 \\ 35 \cdot 31$	$9.86 \\ 9.51$	$1.58 \\ 1.76$	$54 \cdot 34 \\ 53 \cdot 42$	
$rac{ ext{Na_2CO_3.10H_2O} + ext{Sesqui} + ext{NaCl}}{ ext{Sesqui} + ext{NaCl}}$	13.40	0.61	17.54	68.45	29.43	8.44	18.85	43.28	
Sesqui + NaCl	$8 \cdot 48 \begin{vmatrix} 5 \cdot 35 \end{vmatrix}$	0·69 0·84	$20.50 \ 22.38$	$\begin{array}{c c} 70 \cdot 33 \\ 71 \cdot 43 \end{array}$	$\begin{array}{c c} 25 \cdot 84 \\ 27 \cdot 02 \end{array}$	$20.82 \\ 20.32$	$25 \cdot 57 \\ 23 \cdot 85$	$27 \cdot 77 \\ 28 \cdot 81$	
${ m NaHCO_3 + Sesqui}$	$14 \cdot 60$ $12 \cdot 70$ $11 \cdot 52$ $6 \cdot 99$	$3.51 \\ 3.09 \\ 2.86 \\ 2.83$	$3.87 \\ 6.03 \\ 7.64 \\ 13.43$	$78 \cdot 02$ $78 \cdot 18$ $77 \cdot 98$ $76 \cdot 75$	$ \begin{array}{r} 30 \cdot 44 \\ 32 \cdot 46 \\ 12 \cdot 82 \\ 13 \cdot 76 \end{array} $	$ \begin{array}{c c} 31 \cdot 40 \\ 29 \cdot 45 \\ 63 \cdot 95 \\ 60 \cdot 55 \end{array} $	$ \begin{array}{c c} 1 \cdot 37 \\ 2 \cdot 04 \\ 1 \cdot 72 \\ 3 \cdot 12 \end{array} $	36.79 36.05 21.51 22.57	
$NaHCO_3 + Sesqui + NaCl$	2.60	1.53	23.74	$72 \cdot 13$	13.04	51.76	15.37	19.83	

Table LII.—The System : Na_2CO_3 — $NaHCO_3$ —NaCl— H_2O .

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 25° C.

	Cor	nposition o	of solution	n. /	Composition of rest. Grammes per 100 gr.				
Solid phase.		Grammes 1	per 100 gr	•					
	$ m Na_2CO_3$	$ m NaHCO_3$	NaCl	${ m H_2O}$	Na ₂ CO ₃	NaHCO ₃	NaCl	${ m H_2O}$	
$Na_2CO_3.10H_2O + Sesqui$.	19·84 18·99	1·34 0·76	5·01 11·09	73·81 69·16	$34 \cdot 15 \\ 35 \cdot 38$	9·47 9·51	$1.36 \\ 2.93$	55·02 52·18	
$egin{array}{l} \mathrm{Na_2CO_3.10H_2O} + \mathrm{Na_2CO_3.} \\ \mathrm{7H_2O} + \mathrm{Sesqui.} \end{array}$	18.99	0.80	11.38	68.83	40.56	17.88	1.89	39.67	
${ m Na_2CO_3.7H_2O+Sesqui}$.	18.36	0.53	12.84	68 · 27	39.43	14.33	$2 \cdot 97$	43.27	
${ m Na_2CO_3.7H_2O+Sesqui+NaCl}$	17.28	0.34	15·2 8	67.10	29.40	11 · 19	23 · 14	$36 \cdot 27$	
Sesqui $+$ NaCl \dots	$13 \cdot 28 \\ 7 \cdot 28$	0·61 0·53	$\begin{array}{c} 17 \cdot 72 \\ 21 \cdot 35 \end{array}$	$68 \cdot 39 \\ 70 \cdot 84$	$23 \cdot 35 \\ 25 \cdot 62$	18·57 20·13	$\begin{array}{c} 36 \cdot 75 \\ 31 \cdot 81 \end{array}$	$21 \cdot 33$ $22 \cdot 44$	
${ m NaHCO_3 + Sesqui}$	11.35 6.65	$\begin{bmatrix} 2 \cdot 90 \\ 1 \cdot 95 \end{bmatrix}$	7.57 15.04	$78 \cdot 18$ $76 \cdot 36$	14·89 16·39	66·81 63·49	$egin{array}{c} 1\!\cdot\! 10 \ 2\!\cdot\! 22 \end{array}$	$17 \cdot 20 \\ 17 \cdot 90$	
${ m NaHCO_8 + Sesqui + \atop NaCl}$	2.55	1.38	23.97	72.10	12.00	43.17	22.72	22·11	

TABLE LIII.—The System: Na₂CO₃—NaHCO₃—NaCl—H₂O.

Temperature: 30° C.

	Co	omposition	of solution	on.	Composition of rest.				
Solid phase.	. (Grammes 1	per 100 gr	•	(Grammes p	per 100 gr		
	$ m Na_2CO_3$	$ vert$ NaHCO $_3$	NaCl	$\mathrm{H_2O}$	Na ₂ CO ₃	NaHCO ₃	NaCl	H ₂ O	
$egin{aligned} \operatorname{Na_2CO_3.10H_2O} + \operatorname{Na_2CO_3.} \\ \operatorname{7H_2O} + \operatorname{Sesqui} \end{aligned}$	26.61	0.99	3.65	68.75	39.09	13.26	0.72	46.93	
$\begin{array}{c} \mathrm{Na_2CO_3.7H_2O} + \mathrm{Na_2CO_3.} \\ \mathrm{1H_2O} + \mathrm{Sesqui} \end{array}$	22.63	0.61	9.88	66.88	40.46	12.68	2.91	$43 \cdot 95$	
$\begin{array}{c} \mathrm{Na_2CO_3.1H_2O} + \mathrm{Sesqui} + \\ \mathrm{NaCl} \end{array}$	17·7 9	0.53	14.88	66.80	31.93	$12 \cdot 57$	28.94	26.56	
Sesqui + NaCl	$\begin{array}{c} 13 \cdot 20 \\ 7 \cdot 33 \end{array}$	$\begin{array}{c c} 0.99 \\ 0.96 \end{array}$	$\begin{bmatrix} 17 \cdot 69 \\ 21 \cdot 30 \end{bmatrix}$	$68 \cdot 12 \\ 70 \cdot 41$	23·50 —	17.04	31.98	27.48	
${ m NaHCO_3 + Sesqui}$	$\begin{array}{c c} 11 \cdot 21 \\ 6 \cdot 70 \end{array}$	$\begin{vmatrix} 3 \cdot 32 \\ 2 \cdot 25 \end{vmatrix}$	$\begin{bmatrix} 7 \cdot 70 \\ 14 \cdot 96 \end{bmatrix}$	$77 \cdot 77$ $76 \cdot 09$	$\begin{array}{c} 21 \cdot 67 \\ 21 \cdot 86 \end{array}$	$\begin{bmatrix} 52 \cdot 37 \\ 51 \cdot 07 \end{bmatrix}$	$\begin{bmatrix} 1 \cdot 73 \\ 3 \cdot 28 \end{bmatrix}$	$24 \cdot 23 \\ 23 \cdot 79$	
${ m NaHCO_3 + Sesqui} + { m NaCl}$	25.3	1.68	24.01	71.78	$14 \cdot 56$	47.33	17.86	20 · 25	

Table LIV.—The System : Na_2CO_3 — $NaHCO_3$ —NaCl— H_2O .

CONSIDERED AS TWO FOUR-COMPONENT SYSTEMS.

Temperature: 35° C.

	Co	Composition of solution.				Compositio	on of rest.		
Solid phase.	Ċ	rammes p	er 100 gr.		Grammes per 100 gr.				
	$\mathrm{Na_2CO_3}$	NaHCO ₃	NaCl	H ₂ O	Na ₂ CO ₃	NaHCO ₃	NaCl	${ m H_2O}$	
${ m Na_2CO_3.1H_2O+Sesqui}$.	21·96 18·46	0·12 0·11	8·30 12·08	69·62 69·35	32·13 33·43	$13 \cdot 10 \\ 17 \cdot 27$	4·97 6·22	49·80 43·08	
$egin{aligned} ext{Na}_2 ext{CO}_3.7 ext{H}_2 ext{O} + ext{Na}_2 ext{CO}_3.\ 1 ext{H}_2 ext{O} + ext{Sesqui} \end{aligned}$	30.27	0.57	1.97	67.19	43.62	23.76	0.59	$32 \cdot 03$	
$ m Na_2CO_3.1H_2O + Sesqui + NaCl$	17.04	0.61	15.52	66.83	41.07	10.77	18.97	29.19	
Sesqui + NaCl	$\begin{array}{c c} 13 \cdot 23 \\ 7 \cdot 42 \end{array}$	0·57 0·61	$17.85 \\ 21.41$	$68 \cdot 35$ $70 \cdot 56$	$25 \cdot 31 \\ 29 \cdot 72$	15·62 19·90	36·88 23·78	$22 \cdot 19$ $26 \cdot 60$	
$NaHCO_3 + Sesqui \dots$	11.57 6.72 5.52	3·59 2·56 2·10	7.61 14.85 16.97	$77 \cdot 23$ $75 \cdot 87$ $75 \cdot 41$	8·05 11·66 20·44	62·15 60·85 49·89	2.50 3.59 4.29	27·30 23·90 25·38	
NaHCO ₃ + Sesqui + NaCl	$3.25 \\ 3.01$	$\begin{array}{c c} 0.76 \\ 1.34 \end{array}$	$23.75 \\ 23.92$	$72 \cdot 24$ $71 \cdot 73$	$\begin{array}{ c c c }\hline 3.74 \\ 21.64 \\ \end{array}$	61·82 26·85	$13 \cdot 72 \\ 23 \cdot 11$	20·72 28·40	

Table LV.—The System : Na_2CO_3 — $NaHCO_8$ —NaCl— H_2O_8

Temperature: 45° C.

	Co	omposition	of soluti	on.		Compositi	on of rest	
Solid phase	G	trammes p	er 100 gr	•	Grammes per 100 gr.			
	$\mathrm{Na_2CO_3}$	NaHCO ₃	NaCl	${ m H_2O}$	$ m Na_2CO_3$	NaHCO ₃	NaCl	${ m H_2O}$
${ m Na_2CO_3.1H_2O+Sesqui}$.	$23 \cdot 35 \\ 18 \cdot 97$	1·03 0·50	$7.84 \\ 12.62$	67·78 67·91	53·90 43·21	8·17 6·11	$3 \cdot 04 \\ 6 \cdot 74$	34·89 43·94
$ m Na_2CO_3.1H_2O + Sesqui + NaCl$	14.34	0.61	17.40	67.65	43.09	6.80	12.79	$37 \cdot 32$
Sesqui $+$ NaCl \dots	$9 \cdot 25 \\ 6 \cdot 84$	$0.15 \\ 0.50$	$20.62 \\ 21.98$	69·98 70·68	$20.87 \\ 22.85$	13·83 18·53	$33.09 \\ 24.17$	$32 \cdot 21 \\ 34 \cdot 45$
	$6 \cdot 29 \\ 4 \cdot 29$	$egin{array}{c c} 0\cdot 76 \ 1\cdot 11 \end{array}$	$22 \cdot 35$ $23 \cdot 43$	$70 \cdot 60$ $71 \cdot 17$	21·55 —	17.00	25·63 —	35·82 —
${ m NaHCO_3 + Sesqui}$	$12 \cdot 44 \\ 10 \cdot 75 \\ 6 \cdot 94$	5.08 3.29	5·38 8·91	77·10 77·05	$ \begin{array}{c} 20 \cdot 22 \\ 9 \cdot 76 \\ 10 \cdot 80 \end{array} $	53·86 50·27	1·44 3·85	24·48 36·12
${ m NaHCO_3 + Sesqui + NaCl}$		$\begin{bmatrix} 2 \cdot 52 \\ 1 \cdot 99 \end{bmatrix}$	14·70 23·91	$75 \cdot 84$ $71 \cdot 06$	10·80 8·07	42·59 58·25	$7 \cdot 19$ $11 \cdot 29$	39·42 22·39

 $\label{eq:cost} \textbf{Table LVI.--The System: Na}_2\textbf{CO}_3\textbf{---Na}\\ \textbf{HCO}_3\textbf{---Na}\\ \textbf{Cl}\textbf{---H}_2\textbf{O}.$

Temperature : 60° C.

	Composition of solution.			Composition of rest. Grammes per 100 gr.				
Solid phase.	Grammes per 100 gr.							
	$\mathrm{Na_2CO_3}$	$ m NaHCO_3$	NaCl	${ m H_2O}$	Na ₂ CO ₃	NaHCO ₃	NaCl	${ m H_2O}$
$\mathrm{Na_2CO_3.1H_2O} + \mathrm{Sesqui}$.	25·59 18·87	1·57 0·80	$\begin{array}{c} 4 \cdot 73 \\ 11 \cdot 94 \end{array}$	68·11 68·39	50·27 42·66	11·61 16·73	1·90 4·91	$36 \cdot 22 \\ 35 \cdot 70$
$ m Na_2CO_3.1H_2O + Sesqui + NaCl$	12.39	0.53	19.13	67.95	36.46	7.14	20.94	$35 \cdot 46$
Sesqui + NaCl	10.75	0.73	20.06	$68 \cdot 46$	25.40	17.34	$25 \cdot 02$	$32 \cdot 24$
${ m NaHCO_3 + Sesqui}$	14·00 8·99	$\begin{array}{c c} 6 \cdot 11 \\ 4 \cdot 16 \end{array}$	$\begin{vmatrix} 3 \cdot 73 \\ 11 \cdot 34 \end{vmatrix}$	$76 \cdot 16 \\ 75 \cdot 51$	6.89	65.02	1.26	26·83 —
$ m NaHCO_3 + Sesqui + NaCl$	$3 \cdot 45 \\ 3 \cdot 11$	$1 \cdot 83$ $2 \cdot 56$	$23 \cdot 88 \ 24 \cdot 37$	70.84 69.96	15·50 13·01	27·43 47·98	$36 \cdot 13 \\ 18 \cdot 75$	$20 \cdot 94 \\ 20 \cdot 26$

FIXED POINTS.

Temperature	° C.	
21	, Na $_2\mathrm{CO}_3.10\mathrm{Aq} + \mathrm{Na}$	Cl + 7Aq + Solution.
$26 \cdot 2$	Na $_2$ CO $_3$.7Aq + NaC	1 + 1Aq + Solution.
$19 \cdot 7$	Na $_2$ CO $_3$.10Aq + Na	$HCO_3 + S + Solution$
31	Na ₂ CO ₃ .10Aq $+$ 7A	q + S + Solution.
$34 \cdot 5$	Na _o CO _o , $7Aq + 1A$	+S+Solution.